We address the compression efficiency of feedback-free and hash-check distributed video coding,which generates and transmits a hash code of a source information sequence.The hash code helps the decoder perform a motio...We address the compression efficiency of feedback-free and hash-check distributed video coding,which generates and transmits a hash code of a source information sequence.The hash code helps the decoder perform a motion search.A hash collision is a special case in which the hash codes of wrongly reconstructed information sequences occasionally match the hash code of the source information sequence.This deteriorates the quality of the decoded image greatly.In this paper,the statistics of hash collision are analyzed to help the codec select the optimal trade-off between the probability of hash collision and the length of the hash code,according to the principle of rate-distortion optimization.Furthermore,two novel algorithms are proposed:(1) the nonzero prefix of coefficients (NPC),which indicates the count of nonzero coefficients of each block for the second algorithm,and also saves 8.4% bitrate independently;(2) the adaptive selection of hash functions (AHF),which is based on the NPC and saves a further 2%-6% bitrate on average.The detailed optimization of the parameters of AHF is also presented.展开更多
Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky enco...Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-plementation uses LDPC codes for syndrome coding.展开更多
Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused mor...Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused more and more research interests. In this paper a new method based on multiple view geometry is presented for spatial side information generation of uncalibrated video sensor network. Trifocal tensor encapsulates all the geometric relations among three views that are independent of scene structure; it can be computed from image correspondences alone without requiring knowledge of the motion or calibration. Simulation results show that trifocal tensor-based spatial side information improves the rate-distortion performance over motion compensation based interpolation side information by a maximum gap of around 2dB. Then fusion merges the different side information (temporal and spatial) in order to improve the quality of the final one. Simulation results show that the rate-distortion gains about 0.4 dB.展开更多
Side information (SI) is one of the key issues in distributed video coding (DVC) and affects the compression performance of DVC largely. This paper proposes an SI refinement algorithm, in which the Wyner-Ziv (WZ...Side information (SI) is one of the key issues in distributed video coding (DVC) and affects the compression performance of DVC largely. This paper proposes an SI refinement algorithm, in which the Wyner-Ziv (WZ) frame is split into two parts based on checkerboard pattern, and the two parts are encoded independently but decoded sequentially. In the decoding process, the part 1 is first decoded with the initial SI and partially decoded part (PDP) 1 is used to improve the motion vectors (MVs) and SI of both parts. At the next stage, the part 2 is decoded with the improved SI and PDP 2 is used to further refine MVs of the part 2. Then, SI of both parts are further refined. Simulation results show that the proposed algorithm can improve the peak signal to noise ratio (PSNR) by up to 1.43 dB when compared with traditional DVC codec.展开更多
This paper proposes a maximum a posteriori (MAP) based blocking artifact reduction algorithm for discrete cosine transform (DCT) domain distributed video coding, in which the SI and the initial reconstructed Wyner...This paper proposes a maximum a posteriori (MAP) based blocking artifact reduction algorithm for discrete cosine transform (DCT) domain distributed video coding, in which the SI and the initial reconstructed Wyner-Ziv (WZ) frame are utilized to further estimate the original WZ frame. Though the MAP estimate improves quality of the artifact region, it also leads to over-smoothness and decreases quality of the non-artifact region. To overcome this problem, a criterion is presented to discriminate the artifact and the non-artifact region in the initial reconstructed WZ frame, and only the artifact region is updated with the MAP estimate. Simulation results show that the proposed algorithm provides obvious improvement in terms of both objective and subjective evaluations.展开更多
The Wyner-Ziv distributed video coding scheme is characterized for its intraframe encoder and interframe decoder which can also approach the efficiency of an interframe encoder-decoder system. In Wyner-Ziv residual co...The Wyner-Ziv distributed video coding scheme is characterized for its intraframe encoder and interframe decoder which can also approach the efficiency of an interframe encoder-decoder system. In Wyner-Ziv residual coding of video, the residual of a frame with respect to a reference frame is Wyner-Ziv encoded, which can reduces the input entropy and leads to a higher coding efficiency than directly encoding the original frame. In this paper, we propose a new approach of residual coding combined with Region Of Interest (ROI) extraction. Experimental results show that, the proposed scheme achieves better rate-distortion performance compared to conventional Wyner-Ziv coding scheme.展开更多
In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as Laplacian random variables. In this paper we propose that...In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as Laplacian random variables. In this paper we propose that the noises (denoted as N′) between the source block and its co-located block in a reference frame can also be modeled as Laplacian random variables. Furthermore, it is possible to exploit the relationship between N and N′ to improve the performance of the DVC system. A practical scheme based on theoretical insights, the hash signature saving scheme, is proposed. Experimental results show that the proposed scheme saves on average 83.2% of hash signatures, 13.3% of bit-rate, and 3.9% of encoding time.展开更多
Distributed video coding(DVC)is a new video coding architecture.Compared with traditional video coding schemes,DVC has a simple encoder and complex decoder,which makes it suitable for circumstances where the encoder e...Distributed video coding(DVC)is a new video coding architecture.Compared with traditional video coding schemes,DVC has a simple encoder and complex decoder,which makes it suitable for circumstances where the encoder equipments are simple but the decoder equipments are complex.Most of the existing DVC architectures use decoder rate allocation method with the help of feedback channel.According to the results of the current decoding round,the decoder informs the encoder by feedback channel whether more parity bits are needed.The use of feedback channel not only increases the system delay,but also limits the use of DVC to instances where there is no feedback channel.In this paper,we propose a novel encoder rate allocation method.First,the simple three-step motion estimation is introduced into the encoder to estimate the side information of the decoder,and then the number of parity bits the decoder needs for each bitplane is allocated at the encoder according to the difference of the estimated side information and the current Wyner-Ziv(WZ)frame.Experiment results indicate that the accuracy of the proposed method is 5.18%-52.93% higher than that of the method proposed by Morbee.展开更多
针对现有内插结构无反馈分布式视频压缩(DVC)在大图像组条件下存在严重解码延时问题,研究了外推结构的无反馈DVC系统。在编码端,提出一种不等保护码率控制算法,该算法在编码端利用快速运动估计外推产生较高质量的边信息估计,根据比特平...针对现有内插结构无反馈分布式视频压缩(DVC)在大图像组条件下存在严重解码延时问题,研究了外推结构的无反馈DVC系统。在编码端,提出一种不等保护码率控制算法,该算法在编码端利用快速运动估计外推产生较高质量的边信息估计,根据比特平面误码率和比特平面重要性,实现比特平面级的码率控制;在解码端提出基于外推内插边信息更新的迭代解码优化,利用更新的边信息对每一分布式帧进行二次解码,在不增加传输码率的条件下进一步提升解码视频质量。实验结果表明,与现有无反馈码率分配算法相比,该算法能够更精确地分配码率,率失真性能提升0.6~1.8 d B,且解码视频图像的主观质量得到明显改善。展开更多
与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统...与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统的改进算法,在解码端改善了关键帧之间的运动矢量获取以及采用重叠块运动补偿来生成边信息。通过对大量测试序列的实验,验证了改进算法的率失真性能得到改善。展开更多
针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第...针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第N层的低频小波系数采用均匀量化方案,对其他层高频小波系数采用非均匀量化方案。针对高频系数的非均匀量化,对处于"0"左右的高频系数采用较大的量化步长,随着高频系数幅度值的增大,量化步长逐渐减小,量化逐渐精细,从而提升深度图中的边缘细节质量。实验结果表明,对于边缘较多且变化较明显的"Dancer"和"Poznan Hall2"深度序列,该算法能够有效地提高二者的边缘信息质量从而提高其率失真(R-D)性能,最高可达1.2 d B;而对于边缘区域较小且较为模糊的"Newspaper"和"Balloons"深度序列,系统的R-D性能也能被提升0.3 d B左右。展开更多
分布式视频编码(Distributed Video Coding,DVC)是一种新颖的视频压缩方法,具有极低的编码复杂度和良好的抗噪声鲁棒性。为了使人们对该编码方法有所了解,该文首先详细介绍了分布式视频编码的理论基础和特点,然后讨论了分布式视频编码...分布式视频编码(Distributed Video Coding,DVC)是一种新颖的视频压缩方法,具有极低的编码复杂度和良好的抗噪声鲁棒性。为了使人们对该编码方法有所了解,该文首先详细介绍了分布式视频编码的理论基础和特点,然后讨论了分布式视频编码的两大关键技术,包括编码端高效压缩和解码端边信息(side information)插值;最后总结分析了分布式视频编码在低复杂度编码和视频信号鲁棒传输等两大应用领域的研究现状,并对其研究前景进行了探讨。展开更多
基金supported by the National Basic Research Program (973) of China (No.2009CB320903)the Program for New Century Ex-cellent Talents in University,China
文摘We address the compression efficiency of feedback-free and hash-check distributed video coding,which generates and transmits a hash code of a source information sequence.The hash code helps the decoder perform a motion search.A hash collision is a special case in which the hash codes of wrongly reconstructed information sequences occasionally match the hash code of the source information sequence.This deteriorates the quality of the decoded image greatly.In this paper,the statistics of hash collision are analyzed to help the codec select the optimal trade-off between the probability of hash collision and the length of the hash code,according to the principle of rate-distortion optimization.Furthermore,two novel algorithms are proposed:(1) the nonzero prefix of coefficients (NPC),which indicates the count of nonzero coefficients of each block for the second algorithm,and also saves 8.4% bitrate independently;(2) the adaptive selection of hash functions (AHF),which is based on the NPC and saves a further 2%-6% bitrate on average.The detailed optimization of the parameters of AHF is also presented.
文摘Popular video coding standards like H.264 and MPEG working on the principle of motion-compensated pre-dictive coding demand much of the computational resources at the encoder increasing its complexity. Such bulky encoders are not suitable for applications like wireless low power surveillance, multimedia sensor networks, wireless PC cameras, mobile camera phones etc. New video coding scheme based on the principle of distributed source coding is looked upon in this paper. This scheme supports a low complexity encoder, at the same time trying to achieve the rate distortion performance of conventional video codecs. Current im-plementation uses LDPC codes for syndrome coding.
文摘Distributed video coding (DVC) is a new video coding approach based on Wyner-Ziv theorem. The novel uplink-friendly DVC, which offers low-complexity, low-power consuming, and low-cost video encoding, has aroused more and more research interests. In this paper a new method based on multiple view geometry is presented for spatial side information generation of uncalibrated video sensor network. Trifocal tensor encapsulates all the geometric relations among three views that are independent of scene structure; it can be computed from image correspondences alone without requiring knowledge of the motion or calibration. Simulation results show that trifocal tensor-based spatial side information improves the rate-distortion performance over motion compensation based interpolation side information by a maximum gap of around 2dB. Then fusion merges the different side information (temporal and spatial) in order to improve the quality of the final one. Simulation results show that the rate-distortion gains about 0.4 dB.
基金Supported by the National Natural Science Foundation of China ( No. 60736043, 60672088) and the National Basic Research Program of China (No. 2009CB32005).
文摘Side information (SI) is one of the key issues in distributed video coding (DVC) and affects the compression performance of DVC largely. This paper proposes an SI refinement algorithm, in which the Wyner-Ziv (WZ) frame is split into two parts based on checkerboard pattern, and the two parts are encoded independently but decoded sequentially. In the decoding process, the part 1 is first decoded with the initial SI and partially decoded part (PDP) 1 is used to improve the motion vectors (MVs) and SI of both parts. At the next stage, the part 2 is decoded with the improved SI and PDP 2 is used to further refine MVs of the part 2. Then, SI of both parts are further refined. Simulation results show that the proposed algorithm can improve the peak signal to noise ratio (PSNR) by up to 1.43 dB when compared with traditional DVC codec.
基金Supported by the National Natural Science Foundation of China (No.60672088, No.60736043) the National Basic Research Development Program of China (2009CB320905)
文摘This paper proposes a maximum a posteriori (MAP) based blocking artifact reduction algorithm for discrete cosine transform (DCT) domain distributed video coding, in which the SI and the initial reconstructed Wyner-Ziv (WZ) frame are utilized to further estimate the original WZ frame. Though the MAP estimate improves quality of the artifact region, it also leads to over-smoothness and decreases quality of the non-artifact region. To overcome this problem, a criterion is presented to discriminate the artifact and the non-artifact region in the initial reconstructed WZ frame, and only the artifact region is updated with the MAP estimate. Simulation results show that the proposed algorithm provides obvious improvement in terms of both objective and subjective evaluations.
基金Supported by the National Natural Science Foundation of China (No.61003236, 61171053, 61170065)the Doctoral Fund of Ministry of Education of China (No.20113223110002)the Natural Science Major Program for Colleges and Universities in Jiangsu Province(No.11KJA520001)
文摘The Wyner-Ziv distributed video coding scheme is characterized for its intraframe encoder and interframe decoder which can also approach the efficiency of an interframe encoder-decoder system. In Wyner-Ziv residual coding of video, the residual of a frame with respect to a reference frame is Wyner-Ziv encoded, which can reduces the input entropy and leads to a higher coding efficiency than directly encoding the original frame. In this paper, we propose a new approach of residual coding combined with Region Of Interest (ROI) extraction. Experimental results show that, the proposed scheme achieves better rate-distortion performance compared to conventional Wyner-Ziv coding scheme.
基金Project supported by the National Basic Research Program (973) of China (No. 2009CB320903)the Program for New Century Excellent Talents in University
文摘In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as Laplacian random variables. In this paper we propose that the noises (denoted as N′) between the source block and its co-located block in a reference frame can also be modeled as Laplacian random variables. Furthermore, it is possible to exploit the relationship between N and N′ to improve the performance of the DVC system. A practical scheme based on theoretical insights, the hash signature saving scheme, is proposed. Experimental results show that the proposed scheme saves on average 83.2% of hash signatures, 13.3% of bit-rate, and 3.9% of encoding time.
基金supported by the Fundamental Research Funds for the Central Universities.
文摘Distributed video coding(DVC)is a new video coding architecture.Compared with traditional video coding schemes,DVC has a simple encoder and complex decoder,which makes it suitable for circumstances where the encoder equipments are simple but the decoder equipments are complex.Most of the existing DVC architectures use decoder rate allocation method with the help of feedback channel.According to the results of the current decoding round,the decoder informs the encoder by feedback channel whether more parity bits are needed.The use of feedback channel not only increases the system delay,but also limits the use of DVC to instances where there is no feedback channel.In this paper,we propose a novel encoder rate allocation method.First,the simple three-step motion estimation is introduced into the encoder to estimate the side information of the decoder,and then the number of parity bits the decoder needs for each bitplane is allocated at the encoder according to the difference of the estimated side information and the current Wyner-Ziv(WZ)frame.Experiment results indicate that the accuracy of the proposed method is 5.18%-52.93% higher than that of the method proposed by Morbee.
文摘针对现有内插结构无反馈分布式视频压缩(DVC)在大图像组条件下存在严重解码延时问题,研究了外推结构的无反馈DVC系统。在编码端,提出一种不等保护码率控制算法,该算法在编码端利用快速运动估计外推产生较高质量的边信息估计,根据比特平面误码率和比特平面重要性,实现比特平面级的码率控制;在解码端提出基于外推内插边信息更新的迭代解码优化,利用更新的边信息对每一分布式帧进行二次解码,在不增加传输码率的条件下进一步提升解码视频质量。实验结果表明,与现有无反馈码率分配算法相比,该算法能够更精确地分配码率,率失真性能提升0.6~1.8 d B,且解码视频图像的主观质量得到明显改善。
文摘与传统视频编码方法相比,DVC(distributed video coding)在编码性能方面还存在着较大差距。边信息估计是其中的关键技术之一,在很大程度上决定着编码效率。为缩短性能差距,改善边信息估计效率,提出一种针对像素域Wyner-Ziv视频编码系统的改进算法,在解码端改善了关键帧之间的运动矢量获取以及采用重叠块运动补偿来生成边信息。通过对大量测试序列的实验,验证了改进算法的率失真性能得到改善。
文摘针对分布式多视点加深度格式(DMVD)的视频编码中深度图视频解码质量问题,提出一种结合子带层及子带系数的小波域分布式深度视频非均匀量化方案,通过给边缘分配更多比特来提升深度图的边缘质量。结合深度图经小波变换后系数分布特性,对第N层的低频小波系数采用均匀量化方案,对其他层高频小波系数采用非均匀量化方案。针对高频系数的非均匀量化,对处于"0"左右的高频系数采用较大的量化步长,随着高频系数幅度值的增大,量化步长逐渐减小,量化逐渐精细,从而提升深度图中的边缘细节质量。实验结果表明,对于边缘较多且变化较明显的"Dancer"和"Poznan Hall2"深度序列,该算法能够有效地提高二者的边缘信息质量从而提高其率失真(R-D)性能,最高可达1.2 d B;而对于边缘区域较小且较为模糊的"Newspaper"和"Balloons"深度序列,系统的R-D性能也能被提升0.3 d B左右。
文摘分布式视频编码(Distributed Video Coding,DVC)是一种新颖的视频压缩方法,具有极低的编码复杂度和良好的抗噪声鲁棒性。为了使人们对该编码方法有所了解,该文首先详细介绍了分布式视频编码的理论基础和特点,然后讨论了分布式视频编码的两大关键技术,包括编码端高效压缩和解码端边信息(side information)插值;最后总结分析了分布式视频编码在低复杂度编码和视频信号鲁棒传输等两大应用领域的研究现状,并对其研究前景进行了探讨。