With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Pytho...With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness.展开更多
An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method ...An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.展开更多
Resilience against node capture is one of the main indicators of the key pre-distribution security in sensor networks.On providing the attack model and the definition of the resilience against node capture of sensor n...Resilience against node capture is one of the main indicators of the key pre-distribution security in sensor networks.On providing the attack model and the definition of the resilience against node capture of sensor networks,the resilience of basic random key pre-distribution,Q-composite random key pre-distribution and their reinforced schemes are analyzed and compared in depth.Research results show that the size of key pool,the numbers of the keys stored in nodes and the value of Q determine the resilience of random key pre-distribution.The tradeoff between the resilience,security connectivity and costs in sensor networks is presented.These researches lay a foundation on the design of the secure protocol and the algorithm in the specific application environment of sensor networks.展开更多
In this paper, we have used the distributed mean value analysis (DMVA) technique with the help of random observe property (ROP) and palm probabilities to improve the network queuing system throughput. In such networks...In this paper, we have used the distributed mean value analysis (DMVA) technique with the help of random observe property (ROP) and palm probabilities to improve the network queuing system throughput. In such networks, where finding the complete communication path from source to destination, especially when these nodes are not in the same region while sending data between two nodes. So, an algorithm is developed for single and multi-server centers which give more interesting and successful results. The network is designed by a closed queuing network model and we will use mean value analysis to determine the network throughput (b) for its different values. For certain chosen values of parameters involved in this model, we found that the maximum network throughput for β≥0.7?remains consistent in a single server case, while in multi-server case for β≥ 0.5?throughput surpass the Marko chain queuing system.展开更多
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera...Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.展开更多
The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current in...The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.展开更多
Satellite mobile system and space-airground integrated network have a prominent superiority in global coverage which plays a critical role in remote and non-land regions, as well as emergency communications. However, ...Satellite mobile system and space-airground integrated network have a prominent superiority in global coverage which plays a critical role in remote and non-land regions, as well as emergency communications. However, due to the gradual angle attenuations of the satellite antennas, it is difficult to achieve full frequency multiplex among different beams as terrestrial 5G network. Multi-color frequency reuse is widely adopted in both academic and industry. Beam hopping scheme has attracted the attention of researchers recently due to the allocation flexibility. In this paper, we focus on analyzing the performance benefits of beam hopping compared with multi-color frequency reuse scheme in non-uniform user and traffic distributions in satellite system. Aerial networks are also introduced to form a space-airground integrated network for coverage enhancement,and the capacity improvement is analyzed. Besides,additional improved techniques are provided to make comprehensive analysis and comparisons. Theoretical analysis and simulation results indicate that the beam hopping scheme has a prominent superiority in the system capacity compared with the traditional multicolor frequency reuse scheme in both satellite mobile system and future space-air-ground integrated network.展开更多
In the field of high-speed circuits, the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important. This paper presents a new method for ana...In the field of high-speed circuits, the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important. This paper presents a new method for analyzing mixed circuit networks. It adds transmission line end currents to the circuit variables of the classical modified nodal approach and can be applied directly to the mixed circuit networks. We also introduce a frequency-domain technique without requiring decoupling for multiconductor transmission lines. The two methods are combined together to efficiently analyze high-speed circuit networks containing uniform,nonuniform,and frequency-dependent transmission lines. Numerical experiment is presented and the results are compared with that computed by PSPICE.展开更多
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th...Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.展开更多
In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the...In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.展开更多
This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calcul...This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.展开更多
Distributed Generation (DG) in any quantity is relevant to supplement the available energy capacity based on various locations, that is, whether a site specific or non-site specific energy technology. The evacuation i...Distributed Generation (DG) in any quantity is relevant to supplement the available energy capacity based on various locations, that is, whether a site specific or non-site specific energy technology. The evacuation infrastructure that delivers power to the distribution grid is designed with appropriate capacity in terms of size and length. The evacuation lines and distribution network however behave differently as they possess inherent characteristics and are exposed to varying external conditions. It is thus feasible to expect that these networks behave stochastically due to fault conditions and variable loads that destabilize the system. This in essence impacts on the availability of the evacuation infrastructure and consequently on the amount of energy delivered to the grid from the DG stations. Reliability of the evacuation point of a DG is however not a common or prioritized criteria in the decision process that guides investment in DG. This paper reviews a planned solar based DG plant in Uganda. Over the last couple of years, Uganda has seen a significant increase in the penetration levels of DG. With a network that is predominantly radial and experiences low reliability levels, one would thus expect reliability analysis to feature significantly in the assessment of the proposed DG plants. This is however not the case. This paper, uses reliability analysis to assess the impact of different evacuation options of the proposed DG plant on its dispatch levels. The evacuation options were selected based on infrastructure options in other locations with similar solar irradiances as the planned DG location. Outage data were collected and analyzed using the chi square method. It was found to be variable and fitting to different Probability Distribution Functions (PDF). Using stochastic methods, a model that incorporates the PDFs was developed to compute the reliability indices. These were assessed using chi square and found to be variable and fitting different PDFs as well. The viability of the project is reviewed based on Energy Not Supplied (ENS) and the anticipated project payback periods for any considered evacuation line. The results of the study are also reviewed for the benefit of other stakeholders like the customers, the utility and the regulatory body.展开更多
A distributed information network with complex network structure always has a challenge of locating fault root causes.In this paper,we propose a novel root cause analysis(RCA)method by random walk on the weighted faul...A distributed information network with complex network structure always has a challenge of locating fault root causes.In this paper,we propose a novel root cause analysis(RCA)method by random walk on the weighted fault propagation graph.Different from other RCA methods,it mines effective features information related to root causes from offline alarms.Combined with the information,online alarms and graph relationship of network structure are used to construct a weighted graph.Thus,this approach does not require operational experience and can be widely applied in different distributed networks.The proposed method can be used in multiple fault location cases.The experiment results show the proposed approach achieves much better performance with 6%higher precision at least for root fault location,compared with three baseline methods.Besides,we explain how the optimal parameter’s value in the random walk algorithm influences RCA results.展开更多
In order to reveal the complex network feature of aviation network of China,probability distribution of node degree and clustering coefficient of aviation network of China was researched according to statistics data o...In order to reveal the complex network feature of aviation network of China,probability distribution of node degree and clustering coefficient of aviation network of China was researched according to statistics data of civil aviation of China.It was verified that node degree had power function probability distribution.Clustering coefficient of nodes with exponential function probability distribution was discovered.It was found that node degree and clustering coefficient had single peak nonlinear relationship.At the left side of the peak,there is no certain relationship between them.At the right side of the peak,clustering coefficient became smaller with the rise of node degree and there was negative exponential function relationship between them by regression analysis.展开更多
Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information abou...Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4 08,984 and $ 2 80,9 07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.展开更多
In terms of battery design and evaluation,Electric Vehicles(EVs)are receiving a great deal of attention as a modern,eco-friendly,sustainable transportation method.In this paper,a novel battery pack is designed to main...In terms of battery design and evaluation,Electric Vehicles(EVs)are receiving a great deal of attention as a modern,eco-friendly,sustainable transportation method.In this paper,a novel battery pack is designed to maintain a uniform temperature distribution,allowing the battery to operate within its optimal temperature range.The proposed battery design is part of a main channel where a portion of cool air will pass from an inlet then exit from an outlet where a uniform temperature distribution is maintained.First,a 3-D model of a battery cell was created,followed by thermal simulation for 15C,25C,and 35C ambient temperatures.The simulation results reveal that the temperature distribution is nearly uniform,with slightly higher values in the middle portion of the cell height.Second,using finite element analysis(FEA),it was determined that the heat flux per unit area is nearly uniform with a slight increase at the edges.Third,a machine learning model is proposed by utilizing a neural network(NN).Lastly,the heat flux values were predicted using the NN model that was proposed.The model was assessed based on statistical measures where a root mean square error(RMSE)value of 0.87%was achieved.The NN outperformed FEA in terms of time consumption with a high prediction accuracy,leveraging the potential of adopting machine learning over FEA in related operational assessments.展开更多
Stream cipher, DNA cryptography and DNA analysis are the most important R&D fields in both Cryptography and Bioinformatics. HC-256 is an emerged scheme as the new generation of stream ciphers for advanced network ...Stream cipher, DNA cryptography and DNA analysis are the most important R&D fields in both Cryptography and Bioinformatics. HC-256 is an emerged scheme as the new generation of stream ciphers for advanced network security. From a random sequencing viewpoint, both sequences of HC-256 and real DNA data may have intrinsic pseudo-random properties respectively. In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world into huge DNA databases. Researchers notice that mammalian genomes encode thousands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory complexes, and are thought to play a role in localizing these complexes to target loci across the genome. It is a challenge target using higher dimensional visualization tools to organize various complex interactive properties as visual maps. The Variant Map System (VMS) as an emerging scheme is systematically proposed in this paper to apply multiple maps that used four Meta symbols as same as DNA or RNA representations. System architecture of key components and core mechanism on the VMS are described. Key modules, equations and their I/O parameters are discussed. Applying the VM System, two sets of real DNA sequences from both sample human (noncoding DNA) and corn (coding DNA) genomes are collected in comparison with pseudo DNA sequences generated by HC-256 to show their intrinsic properties in higher levels of similar relationships among relevant DNA sequences on 2D maps. Sample 2D maps are listed and their characteristics are illustrated under controllable environment. Visual results are briefly analyzed to explore their intrinsic properties on selected genome sequences.展开更多
In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated alon...In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along with time-consuming to process a massive amount of data.Thus,to design the Distribution Preserving Framework for BD,a novel methodology has been proposed utilizing Manhattan Distance(MD)-centered Partition Around Medoid(MD–PAM)along with Conjugate Gradient Artificial Neural Network(CG-ANN),which undergoes various steps to reduce the complications of BD.Firstly,the data are processed in the pre-processing phase by mitigating the data repetition utilizing the map-reduce function;subsequently,the missing data are handled by substituting or by ignoring the missed values.After that,the data are transmuted into a normalized form.Next,to enhance the classification performance,the data’s dimensionalities are minimized by employing Gaussian Kernel(GK)-Fisher Discriminant Analysis(GK-FDA).Afterwards,the processed data is submitted to the partitioning phase after transmuting it into a structured format.In the partition phase,by utilizing the MD-PAM,the data are partitioned along with grouped into a cluster.Lastly,by employing CG-ANN,the data are classified in the classification phase so that the needed data can be effortlessly retrieved by the user.To analogize the outcomes of the CG-ANN with the prevailing methodologies,the NSL-KDD openly accessible datasets are utilized.The experiential outcomes displayed that an efficient result along with a reduced computation cost was shown by the proposed CG-ANN.The proposed work outperforms well in terms of accuracy,sensitivity and specificity than the existing systems.展开更多
This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performa...This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performance and global asymptotic stability of the concerned neural networks. By constructing the Lyapunov-Krasovskii functional and using the linear matrix inequality technique, sufficient conditions for delay-dependent H∞ performances are obtained, which can be easily solved by some standard numerical algorithms. Finally, numerical examples are given to illustrate the usefulness and effectiveness of the proposed theoretical results.展开更多
In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world into huge DNA databases. Researchers notice that mammalian genomes encoding thousands of large noncoding RNAs ...In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world into huge DNA databases. Researchers notice that mammalian genomes encoding thousands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory complexes, and are thought to play a role in localizing these complexes to target loci across the genome. It is a challenge target using higher dimensional tools to organize various complex interactive properties as visual maps. In this paper, a Pseudo DNA Variant MapPDVM is proposed following Cellular Automata to represent multiple maps that use four Meta symbols as well as DNA or RNA representations. The system architecture of key components and the core mechanism on the PDVM are described. Key modules, equations and their I/O parameters are discussed. Applying the PDVM, two sets of real DNA sequences from both the sample human (noncoding DNA) and corn (coding DNA) genomes are collected in comparison with two sets of pseudo DNA sequences generated by a stream cipher HC-256 under different modes to show their intrinsic properties in higher levels of similar relationships among relevant DNA sequences on 2D maps. Sample 2D maps are listed and their characteristics are illustrated under a controllable environment. Various distributions can be observed on both noncoding and coding conditions from their symmetric properties on 2D maps.展开更多
文摘With the rapid development of urban economy, distribution network construction of city is lagging behind the increment of load, and low-voltage problem has become the main complaints of the power users. Based on Python [1] scripting language, this paper develops a piece of software which can provide a friendly human-machine experience for the user, calculate the voltage of the power distribution area and propose corresponding control measures, then the paper takes the actual power distribution area to verify its effectiveness.
基金Natural Science Funds for the Innovative ResearchGroup of China Under Grant No.50321803
文摘An approach to analyze the seismic reliability of water distribution networks by combining a hydraulic analysis with a first-order reliability method (FORM), is proposed in this paper. The hydraulic analysis method for normal conditions is modified to accommodate the special conditions necessary to perform a seismic hydraulic analysis. In order to calculate the leakage area and leaking flow of the pipelines in the hydraulic analysis method, a new leakage model established from the seismic response analysis of buried pipelines is presented. To validate the proposed approach, a network with 17 nodes and 24 pipelines is investigated in detail. The approach is also applied to an actual project consisting of 463 nodes and 767 pipelines. The results show that the proposed approach achieves satisfactory results in analyzing the seismic reliability of large-scale water distribution networks.
基金Supported by Educational Innovation Fund for Graduates of Xidian University (Program No05006)Natural Science Basic Research Plan in Shaanxi Province of China(Program No2005F28)Xi'an Key Technologies R&D Program(GG06017)
文摘Resilience against node capture is one of the main indicators of the key pre-distribution security in sensor networks.On providing the attack model and the definition of the resilience against node capture of sensor networks,the resilience of basic random key pre-distribution,Q-composite random key pre-distribution and their reinforced schemes are analyzed and compared in depth.Research results show that the size of key pool,the numbers of the keys stored in nodes and the value of Q determine the resilience of random key pre-distribution.The tradeoff between the resilience,security connectivity and costs in sensor networks is presented.These researches lay a foundation on the design of the secure protocol and the algorithm in the specific application environment of sensor networks.
文摘In this paper, we have used the distributed mean value analysis (DMVA) technique with the help of random observe property (ROP) and palm probabilities to improve the network queuing system throughput. In such networks, where finding the complete communication path from source to destination, especially when these nodes are not in the same region while sending data between two nodes. So, an algorithm is developed for single and multi-server centers which give more interesting and successful results. The network is designed by a closed queuing network model and we will use mean value analysis to determine the network throughput (b) for its different values. For certain chosen values of parameters involved in this model, we found that the maximum network throughput for β≥0.7?remains consistent in a single server case, while in multi-server case for β≥ 0.5?throughput surpass the Marko chain queuing system.
文摘Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(Grant No.SGSDJY00GPJS2100135).
文摘The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.
基金the Natural Science Foundation of China under Grant 61801319Sichuan Science and Technology Program under Grant 2020JDJQ0061+1 种基金the Education Agency Project of Sichuan Province under Grant 18ZB0419the Sichuan University of Science and Engineering Talent Introduction Project under Grant 2020RC33。
文摘Satellite mobile system and space-airground integrated network have a prominent superiority in global coverage which plays a critical role in remote and non-land regions, as well as emergency communications. However, due to the gradual angle attenuations of the satellite antennas, it is difficult to achieve full frequency multiplex among different beams as terrestrial 5G network. Multi-color frequency reuse is widely adopted in both academic and industry. Beam hopping scheme has attracted the attention of researchers recently due to the allocation flexibility. In this paper, we focus on analyzing the performance benefits of beam hopping compared with multi-color frequency reuse scheme in non-uniform user and traffic distributions in satellite system. Aerial networks are also introduced to form a space-airground integrated network for coverage enhancement,and the capacity improvement is analyzed. Besides,additional improved techniques are provided to make comprehensive analysis and comparisons. Theoretical analysis and simulation results indicate that the beam hopping scheme has a prominent superiority in the system capacity compared with the traditional multicolor frequency reuse scheme in both satellite mobile system and future space-air-ground integrated network.
文摘In the field of high-speed circuits, the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important. This paper presents a new method for analyzing mixed circuit networks. It adds transmission line end currents to the circuit variables of the classical modified nodal approach and can be applied directly to the mixed circuit networks. We also introduce a frequency-domain technique without requiring decoupling for multiconductor transmission lines. The two methods are combined together to efficiently analyze high-speed circuit networks containing uniform,nonuniform,and frequency-dependent transmission lines. Numerical experiment is presented and the results are compared with that computed by PSPICE.
基金supported by the Science and Technology Project of China Southern Power Grid(GZHKJXM20210043-080041KK52210002).
文摘Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.
基金supported by State Grid Science and Technology Project:Research on Key Protection Technologies for New-type Urban Distribution Network with Controllable Sources and Loads(5100-201913019A-0-0-00).
文摘In this paper,a fault location method for the petal-shaped distribution network(PSDN)with inverter-interfaced distributed generators(IIDGs)is proposed to shorten the time of manual inspection.In order to calculate the fault position,the closed-loop structure of the PSDN is skillfully exploited,and the common control strategies of IIDGs are considered.For asymmetrical faults,a fault line identification formula based on the negative-sequence current phase differences is presented,and a fault location formula only utilizing the negative-sequence current amplitudes is derived to calculated the fault position.For symmetrical faults,the positive-sequence current at both ends of lines and the current output from IIDGs are used to identify the fault line,and the positive-sequence current on multiple lines are used to pinpoint the fault position.In this method,corresponding current phasors are separated into amplitudes and phases to satisfy the limitation of communication level.The simulation results show that the error is generally less than 1%,and the accuracy of the proposed method is not affected by the fault type,fault position,fault resistance,load current,and the IIDG penetration.
文摘This paper presents an analysis method, based on MacCormack's technique, for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks. Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements. The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process. Therefore, it is very convenient to program this method. It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks. The proposed method is second-order-accurate. Numerical experiment is presented to demonstrate its accuracy and efficiency.
文摘Distributed Generation (DG) in any quantity is relevant to supplement the available energy capacity based on various locations, that is, whether a site specific or non-site specific energy technology. The evacuation infrastructure that delivers power to the distribution grid is designed with appropriate capacity in terms of size and length. The evacuation lines and distribution network however behave differently as they possess inherent characteristics and are exposed to varying external conditions. It is thus feasible to expect that these networks behave stochastically due to fault conditions and variable loads that destabilize the system. This in essence impacts on the availability of the evacuation infrastructure and consequently on the amount of energy delivered to the grid from the DG stations. Reliability of the evacuation point of a DG is however not a common or prioritized criteria in the decision process that guides investment in DG. This paper reviews a planned solar based DG plant in Uganda. Over the last couple of years, Uganda has seen a significant increase in the penetration levels of DG. With a network that is predominantly radial and experiences low reliability levels, one would thus expect reliability analysis to feature significantly in the assessment of the proposed DG plants. This is however not the case. This paper, uses reliability analysis to assess the impact of different evacuation options of the proposed DG plant on its dispatch levels. The evacuation options were selected based on infrastructure options in other locations with similar solar irradiances as the planned DG location. Outage data were collected and analyzed using the chi square method. It was found to be variable and fitting to different Probability Distribution Functions (PDF). Using stochastic methods, a model that incorporates the PDFs was developed to compute the reliability indices. These were assessed using chi square and found to be variable and fitting different PDFs as well. The viability of the project is reviewed based on Energy Not Supplied (ENS) and the anticipated project payback periods for any considered evacuation line. The results of the study are also reviewed for the benefit of other stakeholders like the customers, the utility and the regulatory body.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20201120009。
文摘A distributed information network with complex network structure always has a challenge of locating fault root causes.In this paper,we propose a novel root cause analysis(RCA)method by random walk on the weighted fault propagation graph.Different from other RCA methods,it mines effective features information related to root causes from offline alarms.Combined with the information,online alarms and graph relationship of network structure are used to construct a weighted graph.Thus,this approach does not require operational experience and can be widely applied in different distributed networks.The proposed method can be used in multiple fault location cases.The experiment results show the proposed approach achieves much better performance with 6%higher precision at least for root fault location,compared with three baseline methods.Besides,we explain how the optimal parameter’s value in the random walk algorithm influences RCA results.
文摘In order to reveal the complex network feature of aviation network of China,probability distribution of node degree and clustering coefficient of aviation network of China was researched according to statistics data of civil aviation of China.It was verified that node degree had power function probability distribution.Clustering coefficient of nodes with exponential function probability distribution was discovered.It was found that node degree and clustering coefficient had single peak nonlinear relationship.At the left side of the peak,there is no certain relationship between them.At the right side of the peak,clustering coefficient became smaller with the rise of node degree and there was negative exponential function relationship between them by regression analysis.
文摘Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4 08,984 and $ 2 80,9 07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.
文摘In terms of battery design and evaluation,Electric Vehicles(EVs)are receiving a great deal of attention as a modern,eco-friendly,sustainable transportation method.In this paper,a novel battery pack is designed to maintain a uniform temperature distribution,allowing the battery to operate within its optimal temperature range.The proposed battery design is part of a main channel where a portion of cool air will pass from an inlet then exit from an outlet where a uniform temperature distribution is maintained.First,a 3-D model of a battery cell was created,followed by thermal simulation for 15C,25C,and 35C ambient temperatures.The simulation results reveal that the temperature distribution is nearly uniform,with slightly higher values in the middle portion of the cell height.Second,using finite element analysis(FEA),it was determined that the heat flux per unit area is nearly uniform with a slight increase at the edges.Third,a machine learning model is proposed by utilizing a neural network(NN).Lastly,the heat flux values were predicted using the NN model that was proposed.The model was assessed based on statistical measures where a root mean square error(RMSE)value of 0.87%was achieved.The NN outperformed FEA in terms of time consumption with a high prediction accuracy,leveraging the potential of adopting machine learning over FEA in related operational assessments.
文摘Stream cipher, DNA cryptography and DNA analysis are the most important R&D fields in both Cryptography and Bioinformatics. HC-256 is an emerged scheme as the new generation of stream ciphers for advanced network security. From a random sequencing viewpoint, both sequences of HC-256 and real DNA data may have intrinsic pseudo-random properties respectively. In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world into huge DNA databases. Researchers notice that mammalian genomes encode thousands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory complexes, and are thought to play a role in localizing these complexes to target loci across the genome. It is a challenge target using higher dimensional visualization tools to organize various complex interactive properties as visual maps. The Variant Map System (VMS) as an emerging scheme is systematically proposed in this paper to apply multiple maps that used four Meta symbols as same as DNA or RNA representations. System architecture of key components and core mechanism on the VMS are described. Key modules, equations and their I/O parameters are discussed. Applying the VM System, two sets of real DNA sequences from both sample human (noncoding DNA) and corn (coding DNA) genomes are collected in comparison with pseudo DNA sequences generated by HC-256 to show their intrinsic properties in higher levels of similar relationships among relevant DNA sequences on 2D maps. Sample 2D maps are listed and their characteristics are illustrated under controllable environment. Visual results are briefly analyzed to explore their intrinsic properties on selected genome sequences.
文摘In several fields like financial dealing,industry,business,medicine,et cetera,Big Data(BD)has been utilized extensively,which is nothing but a collection of a huge amount of data.However,it is highly complicated along with time-consuming to process a massive amount of data.Thus,to design the Distribution Preserving Framework for BD,a novel methodology has been proposed utilizing Manhattan Distance(MD)-centered Partition Around Medoid(MD–PAM)along with Conjugate Gradient Artificial Neural Network(CG-ANN),which undergoes various steps to reduce the complications of BD.Firstly,the data are processed in the pre-processing phase by mitigating the data repetition utilizing the map-reduce function;subsequently,the missing data are handled by substituting or by ignoring the missed values.After that,the data are transmuted into a normalized form.Next,to enhance the classification performance,the data’s dimensionalities are minimized by employing Gaussian Kernel(GK)-Fisher Discriminant Analysis(GK-FDA).Afterwards,the processed data is submitted to the partitioning phase after transmuting it into a structured format.In the partition phase,by utilizing the MD-PAM,the data are partitioned along with grouped into a cluster.Lastly,by employing CG-ANN,the data are classified in the classification phase so that the needed data can be effortlessly retrieved by the user.To analogize the outcomes of the CG-ANN with the prevailing methodologies,the NSL-KDD openly accessible datasets are utilized.The experiential outcomes displayed that an efficient result along with a reduced computation cost was shown by the proposed CG-ANN.The proposed work outperforms well in terms of accuracy,sensitivity and specificity than the existing systems.
基金supported by the Fund from National Board of Higher Mathematics(NBHM),New Delhi(Grant No.2/48/10/2011-R&D-II/865)
文摘This paper deals with H∞ state estimation problem of neural networks with discrete and distributed time-varying delays. A novel delay-dependent concept of H∞ state estimation is proposed to estimate the H∞ performance and global asymptotic stability of the concerned neural networks. By constructing the Lyapunov-Krasovskii functional and using the linear matrix inequality technique, sufficient conditions for delay-dependent H∞ performances are obtained, which can be easily solved by some standard numerical algorithms. Finally, numerical examples are given to illustrate the usefulness and effectiveness of the proposed theoretical results.
文摘In a recent decade, many DNA sequencing projects are developed on cells, plants and animals over the world into huge DNA databases. Researchers notice that mammalian genomes encoding thousands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory complexes, and are thought to play a role in localizing these complexes to target loci across the genome. It is a challenge target using higher dimensional tools to organize various complex interactive properties as visual maps. In this paper, a Pseudo DNA Variant MapPDVM is proposed following Cellular Automata to represent multiple maps that use four Meta symbols as well as DNA or RNA representations. The system architecture of key components and the core mechanism on the PDVM are described. Key modules, equations and their I/O parameters are discussed. Applying the PDVM, two sets of real DNA sequences from both the sample human (noncoding DNA) and corn (coding DNA) genomes are collected in comparison with two sets of pseudo DNA sequences generated by a stream cipher HC-256 under different modes to show their intrinsic properties in higher levels of similar relationships among relevant DNA sequences on 2D maps. Sample 2D maps are listed and their characteristics are illustrated under a controllable environment. Various distributions can be observed on both noncoding and coding conditions from their symmetric properties on 2D maps.