Recently, the distributed generator (DG) has been successfully studied and applied in distribution system at many countries around the world. Many planning models of the DG integrated distribution system have been pro...Recently, the distributed generator (DG) has been successfully studied and applied in distribution system at many countries around the world. Many planning models of the DG integrated distribution system have been proposed. These models can choose the optimization locations, capacities and technologies of DG with the objective function minimizing power loss, investment costs or total life cycle costs of the investment project. However, capacity of DG that uses renewable energy resources is natural variability according to primary energy. This study proposed a planning model of optimized distribution system that integrates DG in the competitive electricity market. Model can determine equipment sizing and timeframe requiring for upgrading equipment of distribution system as well as select DG technologies with power variable constraints of DG. The objective function is minimizing total life cycle cost of the investment project. The proposed model is calculated and tested for a 48-bus radial distribution system in the GAMS programming language.展开更多
In this study, accessibility and location-allocation models have been integrated into GIS to improve spatial planning and environmental sustainability of health services in Al-Madinah Al-Munawwarah. This integration p...In this study, accessibility and location-allocation models have been integrated into GIS to improve spatial planning and environmental sustainability of health services in Al-Madinah Al-Munawwarah. This integration provides a planning framework in order to check the efficiency of the spatial allocation of health services and to generate alternatives either by proposing an active service or to improve an existing one. To achieve these objectives, the accessibility to the service area was analyzed within the analysis of health services networks, which are divided into eight types: public hospitals, specialized hospitals, health units, healthcare centers, infirmaries, clinic complexes, the Red Crescent Center, and ambulance facilities, with time intervals of (5 minutes - 10 minutes - 15 minutes) to access coverage ranges, and the location-allocation model was used based on the maximum coverage model within a response time not exceeding 15 minutes, The results of the study revealed the poor distribution of health services Al-Madinah Al-Munawwarah suffers from weak accessibility to health services coverage areas and is unable to meet the needs of its population at present. The current need for health services reached twenty-four locations, including two public hospitals, three specialized hospitals, two health centers, three ambulance facilities, four infirmaries, three clinic complexes, four health units, and three Red Crescent centers.展开更多
文摘Recently, the distributed generator (DG) has been successfully studied and applied in distribution system at many countries around the world. Many planning models of the DG integrated distribution system have been proposed. These models can choose the optimization locations, capacities and technologies of DG with the objective function minimizing power loss, investment costs or total life cycle costs of the investment project. However, capacity of DG that uses renewable energy resources is natural variability according to primary energy. This study proposed a planning model of optimized distribution system that integrates DG in the competitive electricity market. Model can determine equipment sizing and timeframe requiring for upgrading equipment of distribution system as well as select DG technologies with power variable constraints of DG. The objective function is minimizing total life cycle cost of the investment project. The proposed model is calculated and tested for a 48-bus radial distribution system in the GAMS programming language.
文摘In this study, accessibility and location-allocation models have been integrated into GIS to improve spatial planning and environmental sustainability of health services in Al-Madinah Al-Munawwarah. This integration provides a planning framework in order to check the efficiency of the spatial allocation of health services and to generate alternatives either by proposing an active service or to improve an existing one. To achieve these objectives, the accessibility to the service area was analyzed within the analysis of health services networks, which are divided into eight types: public hospitals, specialized hospitals, health units, healthcare centers, infirmaries, clinic complexes, the Red Crescent Center, and ambulance facilities, with time intervals of (5 minutes - 10 minutes - 15 minutes) to access coverage ranges, and the location-allocation model was used based on the maximum coverage model within a response time not exceeding 15 minutes, The results of the study revealed the poor distribution of health services Al-Madinah Al-Munawwarah suffers from weak accessibility to health services coverage areas and is unable to meet the needs of its population at present. The current need for health services reached twenty-four locations, including two public hospitals, three specialized hospitals, two health centers, three ambulance facilities, four infirmaries, three clinic complexes, four health units, and three Red Crescent centers.