According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current...According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object. Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images.展开更多
There are two key issues in distributed intrusion detection system,that is,maintaining load balance of system and protecting data integrity.To address these issues,this paper proposes a new distributed intrusion detec...There are two key issues in distributed intrusion detection system,that is,maintaining load balance of system and protecting data integrity.To address these issues,this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation.A data allocation strategy based on capacity and workload is introduced to achieve local load balance,and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster.Moreover,data integrity is protected by using session reassemble and session partitioning.The simulation results show that the new model enjoys favorable advantages such as good load balance,higher detection rate and detection efficiency.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detec...This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detection scheme based on the theory of unknown input observability( UIO) is proposed. By constructing a bank of UIO,the states of the malicious agents can be directly estimated. Secondly,the faulty-node-removal algorithm is provided.Simulations are also provided to demonstrate the effectiveness of the theoretical results.展开更多
The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypot...The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypothese. To achieve the better performance at the fusion center for a general detection system of n 〉 3 sensor configuration, the necessary and sufficient conditions are derived by comparing the probability of detec- tion at the fusion center with that of each of the sensors, with the constraint that the probability of false alarm at the fusion center is equal to that of the sensor. The conditions are related with the performances of the sensors and using the results we can predict the performance at the fusion center of a distributed detection system and can choose appropriate sensors to construct efficient distributed detection systems.展开更多
In this paper, the asynchrony problem of distributed detection is analyzed and discussed.Two approaches are proposed and related results are given. It is shown that all fusion rules can beunified in the framework with...In this paper, the asynchrony problem of distributed detection is analyzed and discussed.Two approaches are proposed and related results are given. It is shown that all fusion rules can beunified in the framework with asynchrony which could be much ciooer to industrial practice.展开更多
Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent di...Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.展开更多
In this study,newly harvested and aged rice seeds were analyzed to determine their aging process,identify the difference between artificially and naturally aged seeds,and develop a rapid,accurate,and non-destructive d...In this study,newly harvested and aged rice seeds were analyzed to determine their aging process,identify the difference between artificially and naturally aged seeds,and develop a rapid,accurate,and non-destructive detection method for water status and water distribution of rice seed with different vigor.To this end,an artificially accelerated aging test was conducted on the newly harvested rice seeds.Then,low-field nuclear magnetic resonance(LF-NMR)technology was applied to test the new(Shennong No.9816,2018),old(Shennong No.9816,2017),and artificially aged seeds(Shennong No.9816,2018).A standard germination test was conducted for three types of seeds.Finally,the differences of water status and distribution between rice seeds of different vigor were analyzed based on the standard germination test results and wave spectrometry information collected using LF-NMR.The results indicated that new seeds,old seeds,and the artificially accelerated aging rice seeds all exhibited two water phases,and the vigor of rice seeds after the artificial accelerated aging test was lower than that of new seeds.There were significant differences between the frequencies of bound water at the time of the peak and the time at the end of the peak for the three types of seeds.The two times showed an increasing trend for rice seeds with poor vigor,indicating that the ability of the water in the rice seeds having poor vigor to combine with other substances was weakened.There were significant differences between the distributions of free water peak end time for the three types of seeds.All the rice seeds with poor vigor exhibited a decreasing trend at this time,indicating that the freedom of free water inside the rice seed samples with poor vigor was weakened.The total water content of the artificially aged seeds and the aged seeds was higher than that of the new seeds,but the free water content increased from artificially aged seeds to new seeds to aged seeds.This indicates that LF-NMR technology is an effective detection method that can simply compare the differences in seed vitality with respect to water distribution as well as differentiate the seed internal water content of artificially aged and naturally aged seeds.展开更多
A reliable method for detecting nanoparticles is necessary for the wide application of nanomaterials. Single particle-inductively coupled plasma mass spectrometry(SP-ICP-MS) was investigated to detect the size of gold...A reliable method for detecting nanoparticles is necessary for the wide application of nanomaterials. Single particle-inductively coupled plasma mass spectrometry(SP-ICP-MS) was investigated to detect the size of gold nanoparticles(Au NPs) in this work. Discrimination of particle signal and iterative algorithm were used to calculate the baseline of particle signal. Influence of dwell time was discussed and 3 ms was selected as dwell time for size detection. Different Au NPs standards(30, 60, 80 and 100 nm) and mixed samples(60 and 100 nm) were determined by SP-ICP-MS and the accuracy was confirmed with reference values. The particle size detection limit was 19 nm in ultrapure water(UP water) and 31 nm in 0.1 μg/L Au^(3+) solution. Stability of Au NPs in ultrapure water and natural water samples was investigated by detecting size variation of AuN Ps. The result shows that Au NPs are stable in aqueous environment for 6 d but degraded after 30 d.展开更多
Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where t...Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.展开更多
Electronic patient data gives many advantages,but also new difficulties.Deadlocks may delay procedures like acquiring patient information.Distributed deadlock resolution solutions introduce uncertainty due to inaccura...Electronic patient data gives many advantages,but also new difficulties.Deadlocks may delay procedures like acquiring patient information.Distributed deadlock resolution solutions introduce uncertainty due to inaccurate transaction properties.Soft computing-based solutions have been developed to solve this challenge.In a single framework,ambiguous,vague,incomplete,and inconsistent transaction attribute information has received minimal attention.The work presented in this paper employed type-2 neutrosophic logic,an extension of type-1 neutrosophic logic,to handle uncertainty in real-time deadlock-resolving systems.The proposed method is structured to reflect multiple types of knowledge and relations among transactions’features that include validation factor degree,slackness degree,degree of deadline-missed transaction based on the degree of membership of truthiness,degree ofmembership of indeterminacy,and degree ofmembership of falsity.Here,the footprint of uncertainty(FOU)for truth,indeterminacy,and falsity represents the level of uncertainty that exists in the value of a grade of membership.We employed a distributed real-time transaction processing simulator(DRTTPS)to conduct the simulations and conducted experiments using the benchmark Pima Indians diabetes dataset(PIDD).As the results showed,there is an increase in detection rate and a large drop in rollback rate when this new strategy is used.The performance of Type-2 neutrosophicbased resolution is better than the Type-1 neutrosophic-based approach on the execution ratio scale.The improvement rate has reached 10%to 20%,depending on the number of arrived transactions.展开更多
The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the reg...The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.展开更多
We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total...We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.展开更多
Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collect...Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method.展开更多
An analysis model, Decision-Making Network Graph, is introduced to construct GDSS decision-mobingnetworAs in order to study the interaction between the lash environment and organizational design. These componentstruct...An analysis model, Decision-Making Network Graph, is introduced to construct GDSS decision-mobingnetworAs in order to study the interaction between the lash environment and organizational design. These componentstructures are tandem one and tree-type one with two layers and multi-branches. Through the decision-makingnetwork graph,aformal solution of the joint effect of expertise of decision-makers and organizational configurationon the decision accuracy Of GDSS is given and an optimization is described展开更多
Data selection-based summation fusion (DSSF) was developed to overcome the shortcomings ot previously developed likelihood ratio tests based on channel statistics (LRT-CS) for the problem of fusing censored binary...Data selection-based summation fusion (DSSF) was developed to overcome the shortcomings ot previously developed likelihood ratio tests based on channel statistics (LRT-CS) for the problem of fusing censored binary decisions transmitted over Nakagami fading channels in a wireless sensor network (WSN). The LRT-CS relies on detection probabilities of the local sensors, while the detection probabilities are a priori unknown for uncooperative targets. Also, for Nakagami fading channels, the LRT-CS involves an infinite series, which is cumbersome for real-time application. In contrast, the DSSF only involves data comparisons and additions and does not require the detection probabilities of local sensors. Furthermore, the performance of DSSF is only slightly degraded in comparison with the LRT-CS when the detection probabilities of local sensors are a priori unknown. Therefore, the DSSF should be used in a WSN with limited resources.展开更多
基金The National Natural Science Foundation of China (No.50238040)
文摘According to the principle of electrical resistance tomography ( ERT), the resistivity distribution of the carbon fiber reinforced concrete (CFRC) in the sensing field can be measured by injecting exciting current and measuring the voltage on the sensor electrode arrays installed on the surface of the object. Therefore, measurement of the resistivity distribution of CFRC is divided into first measuring the boundary conditions and then inversely computing the resistivity distribution. To reach this goal, an ERT system was constructed, which is composed of a sensor array unit, a data acquisition unit and an image reconstruction unit. Simulations of static ERT was performed on set-ups with many objects spread in a homogeneous background, and a simulation of dynamic ERT was also done on a rectangular board, the resistivity of which was changed within a small domain of it. Then, the resistivity distribution of a CFRC sample with a circlar hole as the target was detected by the ERT system. Simulation and experimental results show that the reconstructed ERT image reflects the resistivity distribution or the resistivity change of CFRC structure well. Especially, a small change in resistivity can be identified from the reconstructed images in the simulation of dynamic ERT images.
文摘There are two key issues in distributed intrusion detection system,that is,maintaining load balance of system and protecting data integrity.To address these issues,this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation.A data allocation strategy based on capacity and workload is introduced to achieve local load balance,and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster.Moreover,data integrity is protected by using session reassemble and session partitioning.The simulation results show that the new model enjoys favorable advantages such as good load balance,higher detection rate and detection efficiency.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金National Natural Science Foundations of China(Nos.61203147,61374047,61203126,60973095)
文摘This paper is concerned with distributed fault detection of second-order discrete-time multi-agent systems with adversary,where the adversary is regarded as a slowly time-varying signal.Firstly,a novel intrusion detection scheme based on the theory of unknown input observability( UIO) is proposed. By constructing a bank of UIO,the states of the malicious agents can be directly estimated. Secondly,the faulty-node-removal algorithm is provided.Simulations are also provided to demonstrate the effectiveness of the theoretical results.
基金Sponsored by the National Natural Science Foundation of China(60232010)
文摘The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypothese. To achieve the better performance at the fusion center for a general detection system of n 〉 3 sensor configuration, the necessary and sufficient conditions are derived by comparing the probability of detec- tion at the fusion center with that of each of the sensors, with the constraint that the probability of false alarm at the fusion center is equal to that of the sensor. The conditions are related with the performances of the sensors and using the results we can predict the performance at the fusion center of a distributed detection system and can choose appropriate sensors to construct efficient distributed detection systems.
文摘In this paper, the asynchrony problem of distributed detection is analyzed and discussed.Two approaches are proposed and related results are given. It is shown that all fusion rules can beunified in the framework with asynchrony which could be much ciooer to industrial practice.
基金Supported by the Key Program of Natural Science Foundation of China(050335020)
文摘Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.
基金This project was supported by National Natural Science Foundation of China(Grant No.31701318)National Natural Science Foundation of China Projects of International Cooperation and Exchanges(Grant No.31811540396)Basic Research Project of Education Department of Liaoning Province(Grant No.LSNJC201916).
文摘In this study,newly harvested and aged rice seeds were analyzed to determine their aging process,identify the difference between artificially and naturally aged seeds,and develop a rapid,accurate,and non-destructive detection method for water status and water distribution of rice seed with different vigor.To this end,an artificially accelerated aging test was conducted on the newly harvested rice seeds.Then,low-field nuclear magnetic resonance(LF-NMR)technology was applied to test the new(Shennong No.9816,2018),old(Shennong No.9816,2017),and artificially aged seeds(Shennong No.9816,2018).A standard germination test was conducted for three types of seeds.Finally,the differences of water status and distribution between rice seeds of different vigor were analyzed based on the standard germination test results and wave spectrometry information collected using LF-NMR.The results indicated that new seeds,old seeds,and the artificially accelerated aging rice seeds all exhibited two water phases,and the vigor of rice seeds after the artificial accelerated aging test was lower than that of new seeds.There were significant differences between the frequencies of bound water at the time of the peak and the time at the end of the peak for the three types of seeds.The two times showed an increasing trend for rice seeds with poor vigor,indicating that the ability of the water in the rice seeds having poor vigor to combine with other substances was weakened.There were significant differences between the distributions of free water peak end time for the three types of seeds.All the rice seeds with poor vigor exhibited a decreasing trend at this time,indicating that the freedom of free water inside the rice seed samples with poor vigor was weakened.The total water content of the artificially aged seeds and the aged seeds was higher than that of the new seeds,but the free water content increased from artificially aged seeds to new seeds to aged seeds.This indicates that LF-NMR technology is an effective detection method that can simply compare the differences in seed vitality with respect to water distribution as well as differentiate the seed internal water content of artificially aged and naturally aged seeds.
基金Projects(21407182,21277175)supported by the National Natural Science Foundation of ChinaProject(20120162110019)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A reliable method for detecting nanoparticles is necessary for the wide application of nanomaterials. Single particle-inductively coupled plasma mass spectrometry(SP-ICP-MS) was investigated to detect the size of gold nanoparticles(Au NPs) in this work. Discrimination of particle signal and iterative algorithm were used to calculate the baseline of particle signal. Influence of dwell time was discussed and 3 ms was selected as dwell time for size detection. Different Au NPs standards(30, 60, 80 and 100 nm) and mixed samples(60 and 100 nm) were determined by SP-ICP-MS and the accuracy was confirmed with reference values. The particle size detection limit was 19 nm in ultrapure water(UP water) and 31 nm in 0.1 μg/L Au^(3+) solution. Stability of Au NPs in ultrapure water and natural water samples was investigated by detecting size variation of AuN Ps. The result shows that Au NPs are stable in aqueous environment for 6 d but degraded after 30 d.
基金UPNM Grant J0117-UPNM/2016/GPJP/5/ICT/2.The authors fully acknowledged Ministry of Higher Education(MOHE)and National Defence University of Malaysia for the approved fund which makes this important research viable and effective.The authors also would like to thank University Grant Commission of Bangladesh,Comilla University for the financial support.
文摘Pocket Switched Networks(PSN)represent a particular remittent network for direct communication between the handheld mobile devices.Compared to traditional networks,there is no stable topology structure for PSN where the nodes observe the mobility model of human society.It is a kind of Delay Tolerant Networks(DTNs)that gives a description to circulate information among the network nodes by the way of taking the benefit of transferring nodes from one area to another.Considering its inception,there are several schemes for message routing in the infrastructure-less environment in which human mobility is only the best manner to exchange information.For routing messages,PSN uses different techniques such asDistributed Expectation-Based Spatio-Temporal(DEBT)Epidemic(DEBTE),DEBT Cluster(DEBTC),and DEBT Tree(DEBTT).Understanding on how the network environment is affected for these routing strategies are the main motivation of this research.In this paper,we have investigated the impact of network nodes,the message copies per transmission,and the overall carrying out of these routing protocols.ONE simulator was used to analyze those techniques on the basis of delivery,overhead,and latency.The result of this task demonstrates that for a particular simulation setting,DEBTE is the best PSN routing technique among all,against DEBTC and DEBTT.
文摘Electronic patient data gives many advantages,but also new difficulties.Deadlocks may delay procedures like acquiring patient information.Distributed deadlock resolution solutions introduce uncertainty due to inaccurate transaction properties.Soft computing-based solutions have been developed to solve this challenge.In a single framework,ambiguous,vague,incomplete,and inconsistent transaction attribute information has received minimal attention.The work presented in this paper employed type-2 neutrosophic logic,an extension of type-1 neutrosophic logic,to handle uncertainty in real-time deadlock-resolving systems.The proposed method is structured to reflect multiple types of knowledge and relations among transactions’features that include validation factor degree,slackness degree,degree of deadline-missed transaction based on the degree of membership of truthiness,degree ofmembership of indeterminacy,and degree ofmembership of falsity.Here,the footprint of uncertainty(FOU)for truth,indeterminacy,and falsity represents the level of uncertainty that exists in the value of a grade of membership.We employed a distributed real-time transaction processing simulator(DRTTPS)to conduct the simulations and conducted experiments using the benchmark Pima Indians diabetes dataset(PIDD).As the results showed,there is an increase in detection rate and a large drop in rollback rate when this new strategy is used.The performance of Type-2 neutrosophicbased resolution is better than the Type-1 neutrosophic-based approach on the execution ratio scale.The improvement rate has reached 10%to 20%,depending on the number of arrived transactions.
文摘The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.
基金funded by the National Natural Science Foundation of China(Grant No.10973026)
文摘We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.
基金supported by the National High Technology Research and Development Program of China(No.2011AA040103-7)the National Key Scientific Instrument and Equipment Development Project(No.2012YQ15008703)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LY13F020015)National Science Foundation of China(No.61104089)Science and Technology Commission of Shanghai Municipality(No.11JC1404000)Shanghai Rising-Star Program(No.13QA1401600)
文摘Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method.
文摘An analysis model, Decision-Making Network Graph, is introduced to construct GDSS decision-mobingnetworAs in order to study the interaction between the lash environment and organizational design. These componentstructures are tandem one and tree-type one with two layers and multi-branches. Through the decision-makingnetwork graph,aformal solution of the joint effect of expertise of decision-makers and organizational configurationon the decision accuracy Of GDSS is given and an optimization is described
文摘Data selection-based summation fusion (DSSF) was developed to overcome the shortcomings ot previously developed likelihood ratio tests based on channel statistics (LRT-CS) for the problem of fusing censored binary decisions transmitted over Nakagami fading channels in a wireless sensor network (WSN). The LRT-CS relies on detection probabilities of the local sensors, while the detection probabilities are a priori unknown for uncooperative targets. Also, for Nakagami fading channels, the LRT-CS involves an infinite series, which is cumbersome for real-time application. In contrast, the DSSF only involves data comparisons and additions and does not require the detection probabilities of local sensors. Furthermore, the performance of DSSF is only slightly degraded in comparison with the LRT-CS when the detection probabilities of local sensors are a priori unknown. Therefore, the DSSF should be used in a WSN with limited resources.