Nitric oxide(NO),a bioactive signaling molecule,serves as an antioxidant and anti-stress agent under abiotic stress.A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside(SNP),a ...Nitric oxide(NO),a bioactive signaling molecule,serves as an antioxidant and anti-stress agent under abiotic stress.A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside(SNP),a NO donor,on tomato seedlings exposed to 50 μmol L-1CuCl 2.The results show that copper is primarily stored in the soluble cell sap fraction in the roots,especially after treatment with Cu+SNP treatment,which accounted for 66.2% of the total copper content.The copper concentration gradually decreased from the roots to the leaves.In the leaves,exogenous NO induces the storage of excess copper in the cell walls.Copper stress decreases the proportion of copper integrated with pectates and proteins,but exogenous NO remarkably reverses this trend.The alleviating effect of NO is blocked by hemoglobin.Thus,exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress.Although exogenous NO inhibited the absorption and transport of excess copper to some extent,the copper accumulation in tomato seedlings significantly increased under copper stress.The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.展开更多
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence...To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.展开更多
Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empiric...Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages(n) and angle interval between the two adjacent stages(Δα) on thickness distribution was investigated. Firstly, a finite element method(FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°.Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.展开更多
Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such r...Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such reservoirs, the reliability of the classical logging evaluation models established for diagenetic reservoirs is questionable. This study used well W8 in the Qiongdongnan Basin to explore the clay content, porosity, saturation, and hydrate-enriched layer identification of a logging-based hydrate reservoir, and it was found that considering the effect of the clay content on the log response is necessary in the logging evaluation of hydrate reservoirs. In the evaluation of clay content, a method based on the optimization inversion method can obtain a more reliable clay content than other methods. Fine-grained sediment reservoirs have a high clay content, and the effect of clay on log responses must be considered when calculating porosity. In addition, combining density logging and neutron porosity logging data can obtain the best porosity calculation results, and the porosity calculation method based on sonic logging predicted that the porosity of the studied reservoir was low. It was very effective to identify hydrate layers based on resistivity, but the clay distribution and pore structure will also affect the relationship between resistivity, porosity and saturation, and it was suggested that the factors effecting the resistivity of different layers should be considered in the saturation evaluation and that a suitable model should be selected. This study also considered the lack of clarity of the relationships among the lithology, physical properties, hydrate-bearing occurrence properties, and log response properties of hydrate reservoirs and the lack of specialized petrophysical models. This research can directly help to improve hydrate logging evaluation.展开更多
Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollo...Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.展开更多
X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those...X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoqu inone- (N H-4 )-2 S O-4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.展开更多
Solution culture was conducted in order to understand accumulation characteristics and chemical forms of Pb in Arenaria orbiculata (A. orbiculata) and the response of root exudates to Pb addition. The results showed...Solution culture was conducted in order to understand accumulation characteristics and chemical forms of Pb in Arenaria orbiculata (A. orbiculata) and the response of root exudates to Pb addition. The results showed that: 1) Pb contents in the shoot and root of A. orbiculata increased with increasing in Pb concentrations in solution. 2) The contents of Pb chemical forms under Pb addition followed as: HAc extractable fraction'(FriAC)〉 HC1 extractable fraction (FHcl)〉 NaCl extractable fraction (FNacl) 〉 ethanol-extractable fraction (FE) 〉 water extractable fraction (Fw). 3) Increased Pb level in the medium caused increases in Pb contents in the four subcellular fractions of shoots and roots, with most accumulation in FIV (Fraction 'IV, sbluble fraction) in shoots and FI (Fraction I, cell wall fraction) in roots. 4) Contents of soluble sugar and free amino acid of root exudates increased with increasing Pb concentration in solution. Significantly positive correlations between Pb and contents of soluble sugar and free amino acid were observed. 5) With Pb concentrations in solution, low molecular weight organic acids (LMWOAs) contents followed the tendency: tartaric acid 〉 acetic acid 〉 malic acid 〉 citric acid. Significantly positive correlation was observed between Pb and citric acid contents. The results indicate that soluble sugars, free amino acid and citric acid in root exudates of A.orbiculata facilitate the absorption and accumulation of Pb, which exist in NaCl-, HCI- and HAc- extractable Pb forms, FI and FIV fractions, resulting in tolerance of A.orbiculata to Pb.展开更多
The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of^20...The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of^208 Pb by parity-violating electron scattering(PVS). Parity-violating asymmetries of^208 Pb with different types of neutron skins are systematically calculated and compared with the experimental data of PREx. The results indicate that the PVS experiments are very sensitive to the nuclear neutron distributions. From further PVS measurements, detailed information on nuclear neutron distributions can be extracted.展开更多
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to △ transition form factors as well as the △ electromagnetic form factors. The masses of the low lyi...We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to △ transition form factors as well as the △ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to △ transition and △ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to △ transition form factor is also evaluated using dynamical domain wall fermions. The momentum frame are extracted using the form factors transverse density distributions of the △ in the infinite determined from lattice QCD.展开更多
基金supported partially by the National Natural Science Foundation of China (31201619)Profession Expert Group of Facility Cultivation and Engineering (CARS25-D-03)the Sci-Tech Development Project of Tai’an City, China (32606)
文摘Nitric oxide(NO),a bioactive signaling molecule,serves as an antioxidant and anti-stress agent under abiotic stress.A hydroponics experiment was conducted to investigate the effects of sodium nitroprusside(SNP),a NO donor,on tomato seedlings exposed to 50 μmol L-1CuCl 2.The results show that copper is primarily stored in the soluble cell sap fraction in the roots,especially after treatment with Cu+SNP treatment,which accounted for 66.2% of the total copper content.The copper concentration gradually decreased from the roots to the leaves.In the leaves,exogenous NO induces the storage of excess copper in the cell walls.Copper stress decreases the proportion of copper integrated with pectates and proteins,but exogenous NO remarkably reverses this trend.The alleviating effect of NO is blocked by hemoglobin.Thus,exogenous NO is likely involved in the regulation of the subcellular copper concentrations and its chemical forms under copper stress.Although exogenous NO inhibited the absorption and transport of excess copper to some extent,the copper accumulation in tomato seedlings significantly increased under copper stress.The use of exogenous NO to enhance copper tolerance in some plants is a promising method for copper remediation.
基金supported by Open Research Fund of Hubei Key Laboratory of Blasting(Engineering HKL-BEF202006)the National Natural Science Foundation of China(52079102,52108368).
文摘To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.
基金Project(51005258) supported by the National Natural Science Foundation of ChinaProject(CDJZR12130065) supported by the Fundamental Research Funds for the Central Universities,China
文摘Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages(n) and angle interval between the two adjacent stages(Δα) on thickness distribution was investigated. Firstly, a finite element method(FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°.Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.
基金funded by the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology(No.MGQNLM-KF202004)Hainan Provincial Natural Science Foundation of China(Nos.422RC746 and 421QN281)+2 种基金the National Natural Science Foundation of China(No.42106213)the China Postdoctoral Science Foundation(Nos.2021M690161 and 2021T140691)the Postdoctorate Funded Project in Hainan Province.
文摘Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such reservoirs, the reliability of the classical logging evaluation models established for diagenetic reservoirs is questionable. This study used well W8 in the Qiongdongnan Basin to explore the clay content, porosity, saturation, and hydrate-enriched layer identification of a logging-based hydrate reservoir, and it was found that considering the effect of the clay content on the log response is necessary in the logging evaluation of hydrate reservoirs. In the evaluation of clay content, a method based on the optimization inversion method can obtain a more reliable clay content than other methods. Fine-grained sediment reservoirs have a high clay content, and the effect of clay on log responses must be considered when calculating porosity. In addition, combining density logging and neutron porosity logging data can obtain the best porosity calculation results, and the porosity calculation method based on sonic logging predicted that the porosity of the studied reservoir was low. It was very effective to identify hydrate layers based on resistivity, but the clay distribution and pore structure will also affect the relationship between resistivity, porosity and saturation, and it was suggested that the factors effecting the resistivity of different layers should be considered in the saturation evaluation and that a suitable model should be selected. This study also considered the lack of clarity of the relationships among the lithology, physical properties, hydrate-bearing occurrence properties, and log response properties of hydrate reservoirs and the lack of specialized petrophysical models. This research can directly help to improve hydrate logging evaluation.
基金supported by National Natural Science Foundation of China (Grant No. 50875230)
文摘Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lam6 solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.
基金Project (No. 39790100) supported by the National Natural Science Foundation of China.
文摘X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoqu inone- (N H-4 )-2 S O-4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.
文摘Solution culture was conducted in order to understand accumulation characteristics and chemical forms of Pb in Arenaria orbiculata (A. orbiculata) and the response of root exudates to Pb addition. The results showed that: 1) Pb contents in the shoot and root of A. orbiculata increased with increasing in Pb concentrations in solution. 2) The contents of Pb chemical forms under Pb addition followed as: HAc extractable fraction'(FriAC)〉 HC1 extractable fraction (FHcl)〉 NaCl extractable fraction (FNacl) 〉 ethanol-extractable fraction (FE) 〉 water extractable fraction (Fw). 3) Increased Pb level in the medium caused increases in Pb contents in the four subcellular fractions of shoots and roots, with most accumulation in FIV (Fraction 'IV, sbluble fraction) in shoots and FI (Fraction I, cell wall fraction) in roots. 4) Contents of soluble sugar and free amino acid of root exudates increased with increasing Pb concentration in solution. Significantly positive correlations between Pb and contents of soluble sugar and free amino acid were observed. 5) With Pb concentrations in solution, low molecular weight organic acids (LMWOAs) contents followed the tendency: tartaric acid 〉 acetic acid 〉 malic acid 〉 citric acid. Significantly positive correlation was observed between Pb and citric acid contents. The results indicate that soluble sugars, free amino acid and citric acid in root exudates of A.orbiculata facilitate the absorption and accumulation of Pb, which exist in NaCl-, HCI- and HAc- extractable Pb forms, FI and FIV fractions, resulting in tolerance of A.orbiculata to Pb.
基金Supported by the National Natural Science Foundation of China(11505292,11175085,11235001,11447226)the Shandong Provincial Natural Science Foundation,China(BS2014SF007)the Fundamental Research Funds for the Central Universities(15CX02072A,15CX02070A,15CX05026A,13CX10022A,14CX02157A)
文摘The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of^208 Pb by parity-violating electron scattering(PVS). Parity-violating asymmetries of^208 Pb with different types of neutron skins are systematically calculated and compared with the experimental data of PREx. The results indicate that the PVS experiments are very sensitive to the nuclear neutron distributions. From further PVS measurements, detailed information on nuclear neutron distributions can be extracted.
基金Supported by Cyprus Research Promotion Foundation under contracts ΠENEK/ENIΣX/0505-39, EPYAN/0506/08 and KY-ΓA/0907/11
文摘We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to △ transition form factors as well as the △ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to △ transition and △ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to △ transition form factor is also evaluated using dynamical domain wall fermions. The momentum frame are extracted using the form factors transverse density distributions of the △ in the infinite determined from lattice QCD.