A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fu...In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fuels of the system,including coal and gas,would cause different environmental impacts. Meanwhile,the reliability of the heating networks would be changed because the peak load regulating boiler could work as a standby heat source. A model for assessment of heating system was established by value analysis to optimize this kind of system. Energy consumption,greenhouse gas emission,pollution emission and system reliability were selected as functional assessment indexes in the model. Weights of each function were determined by analytical hierarchy process (AHP) and experts consultation. Life cycle cost was used as the cost in the model. A real case as an example was discussed to obtain the optimal base load ratio. The result shows that the optimal base load ratio of the case is 0.77.展开更多
This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studie...This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.展开更多
The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipme...The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.展开更多
The most economical and rational means of heat supply for city inhabitants are district heating systems. Heat generated in power plants and large heat sources is cheaper than heat from individual sources. The reason f...The most economical and rational means of heat supply for city inhabitants are district heating systems. Heat generated in power plants and large heat sources is cheaper than heat from individual sources. The reason for that is the amount of the generated heat and the used fuel (coal for most heat sources). District heating, a very important energy sub-sector for the Polish economy, provides heat supply to centralised heating systems, which, on average, satisfy 72% of the demand for heat in Polish cities. Therefore, several million Polish citizens use heat from district heating systems that produce heat in professional, industrial and municipal power plants. In Europe, over 100 million citizens use district heating systems. The present situation of the Polish district heating sector is a result of Poland's transformation that took place at the beginning of the 1990s. The reform put the obligation of heat supply on the local authorities, on the municipality, instead of the state. Along with the transformation, district heating also made huge technological and technical progress. Increasing expectations of recipients posed new challenges for the branch, however.展开更多
The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use ...The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use of thermal energy, enabling also the provision of quality customer services, as the data concerning the status of the existing networks is available in a timely manner, and in the stated amounts. Over the last decades, the use of WSN systems in enabling quality monitoring of heat production and supply process has been widely discussed among various researchers and industry experts, but has been little deployed in practice. These researchers and industry experts have analysed the advantages and constraints related to the use of the WSN in district heating. A pilot project conducted by Riga Heat (the main heating supplier in Riga, Latvia) has allowed to gain a real life experience as to the use of the WSN system in district in-house heating substations, and is deemed to be a major step towards future development of WSN technologies.展开更多
The district heating company "Rigas siltums" operates biomass fuelled boiler in Riga city. Three systems consisting ofbiomass boilers having a comparatively similar heat capacity and particle abatement units like mu...The district heating company "Rigas siltums" operates biomass fuelled boiler in Riga city. Three systems consisting ofbiomass boilers having a comparatively similar heat capacity and particle abatement units like multicyclons, electrostatic precipitators and flue gas condensers are compared. The main goal of the study is to evaluate the boiler plant as a system where solid particles are both emitted and caught. The results show that, the particulate matter can be efficiently trapped from flue gases by the particle abatement technologies, and the electrostatic precipitator with sufficiently large collection surfaces is able to provide appropriate flue gas treatment of the particulate matter in the biomass boilers also without pre-cleaning of the flue gas in multieyelons.展开更多
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.
文摘In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fuels of the system,including coal and gas,would cause different environmental impacts. Meanwhile,the reliability of the heating networks would be changed because the peak load regulating boiler could work as a standby heat source. A model for assessment of heating system was established by value analysis to optimize this kind of system. Energy consumption,greenhouse gas emission,pollution emission and system reliability were selected as functional assessment indexes in the model. Weights of each function were determined by analytical hierarchy process (AHP) and experts consultation. Life cycle cost was used as the cost in the model. A real case as an example was discussed to obtain the optimal base load ratio. The result shows that the optimal base load ratio of the case is 0.77.
文摘This paper describes possibilities to utilize sea water for district heating and cooling purposes in Tallinn costal area. The sea water temperature profiles and suitability of heating and cooling generation are studied for continental climatic conditions. The district network study bases on 21 buildings located near to the Gulf of Finland. Industrial reversible heat pump technology is selected to cover heating and cooling loads for the new buildings. Combination of existing district heating and heat pump technology is considered for existing buildings. The results show possibilities, threats and need for further research of the sea water based heat pump district network implementation.
文摘The control of heat exchange stations in district heating system is critical for the overall energy efficiency and can be very difficult due to high level of complexity. A conventional method is to control the equipment such that the temperature of hot water supply is maintained at a set-point that may be a fixed value or be compensated against the external temperature. This paper presents a novel scheme that can determine the optimal set-point of hot water supply that maximizes the energy efficiency whilst providing sufficient heating capacity to the load. This scheme is based on Adaptive Neuro-Fuzzy Inferential System. The aim of this study is to improve the overall performance of district heating systems.
文摘The most economical and rational means of heat supply for city inhabitants are district heating systems. Heat generated in power plants and large heat sources is cheaper than heat from individual sources. The reason for that is the amount of the generated heat and the used fuel (coal for most heat sources). District heating, a very important energy sub-sector for the Polish economy, provides heat supply to centralised heating systems, which, on average, satisfy 72% of the demand for heat in Polish cities. Therefore, several million Polish citizens use heat from district heating systems that produce heat in professional, industrial and municipal power plants. In Europe, over 100 million citizens use district heating systems. The present situation of the Polish district heating sector is a result of Poland's transformation that took place at the beginning of the 1990s. The reform put the obligation of heat supply on the local authorities, on the municipality, instead of the state. Along with the transformation, district heating also made huge technological and technical progress. Increasing expectations of recipients posed new challenges for the branch, however.
文摘The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use of thermal energy, enabling also the provision of quality customer services, as the data concerning the status of the existing networks is available in a timely manner, and in the stated amounts. Over the last decades, the use of WSN systems in enabling quality monitoring of heat production and supply process has been widely discussed among various researchers and industry experts, but has been little deployed in practice. These researchers and industry experts have analysed the advantages and constraints related to the use of the WSN in district heating. A pilot project conducted by Riga Heat (the main heating supplier in Riga, Latvia) has allowed to gain a real life experience as to the use of the WSN system in district in-house heating substations, and is deemed to be a major step towards future development of WSN technologies.
文摘The district heating company "Rigas siltums" operates biomass fuelled boiler in Riga city. Three systems consisting ofbiomass boilers having a comparatively similar heat capacity and particle abatement units like multicyclons, electrostatic precipitators and flue gas condensers are compared. The main goal of the study is to evaluate the boiler plant as a system where solid particles are both emitted and caught. The results show that, the particulate matter can be efficiently trapped from flue gases by the particle abatement technologies, and the electrostatic precipitator with sufficiently large collection surfaces is able to provide appropriate flue gas treatment of the particulate matter in the biomass boilers also without pre-cleaning of the flue gas in multieyelons.