The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-pea...The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00-10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00-13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.展开更多
Over the past seven decades, the grain yield of maize(Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis. In order to ...Over the past seven decades, the grain yield of maize(Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis. In order to reveal photosynthetic characters of elite inbred lines in different ears, a field experiment was conducted at the North China Plain of Shandong Province in China. Six parental lines of maize introduced in three eras(the 1960 s, 1980 s, and 2000 s) were investigated diurnal variation of gas exchange, chlorophyll fluorescence, and photosynthetic response characteristic at the grain filling stage. Compared to earlier parental lines, the 2000 s parental lines always had higher net photosynthetic rate(Pn) throughout the day, especially at noon, and a mid-day depression in Pn did not occur in all hybrids parental lines. Moreover, the stomatal conductance(Gs) and water use efficiency(WUE) of the 2000 s’ lines showed higher value than those of the 1960 s’ and 1980 s’ lines. The inbred lines differences in photosynthetic parameters were partly owing to their different quantum carboxylation efficiencies and light synthase activities. Simultaneously, the 2000 s parental lines exhibited lower light and CO2 compensation points, and their higher apparent quantum yield, and carboxylation efficiency. These suggested that the modern parental lines required lower light intensity and less CO2 to maintain a relatively high photosynthetic capacity, substantially increasing leaf physical quality and stress resistance. It provided crucial information of high photo-efficiency and stress-resistance breeding in maize.展开更多
The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Pn)...The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Pn) and dark respiration rate (DR) under saturation light intensity and appropriate temperature. 2) There were a little difference in light compensation point among them. Photo flux density (PFD) were about 360μmol/m2·s when Pn tended to zero. 3) When PFD>1 900 μmol/m2·s, photoinhibition occuried a-mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.展开更多
[Objective]The aim was to measure photosynthetic characters of SC 205, a cassava cultivar, and explore the relationships of the net photosynthetic rate (Pn) with physiological and ecological factors. [Method] The di...[Objective]The aim was to measure photosynthetic characters of SC 205, a cassava cultivar, and explore the relationships of the net photosynthetic rate (Pn) with physiological and ecological factors. [Method] The diurnal variations of photosyn-thesis in leaves of SC205 were studied by LICOR-6400 portable photosynthesis system, and the relationships of the net photosynthetic rate (Pn) with physiological and ecological factors were studied by simple correlation analysis and path analysis. [Result] The curve of diurnal variation of Pn showed single peak at 10:00 am at 24.07 μ mol CO2 m2/s, without showing midday depression; the diurnal changes of stomatal conductance (Gs), transpiration rate (Tr), leaf temperature (Tl), air tempera-ture (Ta) and photosynthetic active radiation (PAR) al showed single peak curves, and there were positive relationships of Pn with Gs, Tr, Tl, Ta and PAR. The diur-nal variations of intercellular CO2 concentration (Ci), atmospheric CO2 concentration (Ca), relative humidity (RH) showed in a U-shape curve. There were highly signifi-cant positive correlation of Pn with Gs and PAR; the diurnal variation of Pn had highly significant negative correlations with Ci and Ca. The direct impact of physio-logical factors on Pn was as fol ows: Ci>Gs>Tl>Tr, and the direct impact of ecologi-cal factors was RH>PAR>Ca>Ta. [Conclusion] The research showed that Ci, Gs and Tr play very important roles in the changes of Pn among the physiological fac-tors, and PAR and Ca affect the changes of Pn among the ecological factors.展开更多
[Objectives]This study was conducted to investigate the diurnal variations of photosynthetic and physiological characteristics in 3-year-old Kadsura coccinea(Lem.)A.C.Smith plants.[Methods]A Li-6400 portable photosynt...[Objectives]This study was conducted to investigate the diurnal variations of photosynthetic and physiological characteristics in 3-year-old Kadsura coccinea(Lem.)A.C.Smith plants.[Methods]A Li-6400 portable photosynthetic system was used to study the diurnal variations of the photosynthetic physiological characteristics of K.coccinea.[Results]The diurnal variation of the net photosynthetic rate(Pn)of K.coccinea leaves showed a"double peak"curve,and there was a lunch break at noon.The maximum value of Pn[4.51 mmol/(m^(2)·s)]appeared at 10:00,and the daily average Pn was 3.98 mol/(m^(2)·s);and the stepwise regression analysis showed that photosynthetically active radiation(PAR)and stomatal conductance(Gs)were the main factors affecting Pn.The partial correlation analysis and path analysis showed that the order of effects on Pn was Gs>PAR.[Conclusions]This study provides a reference for further research on the development and utilization of K.coccinea.展开更多
In glacierized catchments, glacier runoff typically shows a strong diurnal cycle in the ablation season(June-September). To elucidate the effect of these processes on the chemical weathering, fresh snowfall and water ...In glacierized catchments, glacier runoff typically shows a strong diurnal cycle in the ablation season(June-September). To elucidate the effect of these processes on the chemical weathering, fresh snowfall and water samples were collected and studied from the supraglacial river, proglacial river,and gauging site in Qiyi glacierized catchment Qilian Mountains, Northwestern China, in the summer of2011. The pH and electronic conductivity(EC) were determined in the field, and the concentrations of major ions(Na^+, K^+, Mg^(2+), Ca^(2+), Cl^-, SO_4^(2-), NO_3^-) were measured. The results indicated that EC linearly increased with increasing distance from the glacial snout, and the concentrations of major ions increased with increasing water-rock interaction time. Along the flow path of the glacier runoff, Na^+ and Cl^-are more concentrated than other ions in the supraglacial river while Mg^(2+) and SO_4^(2-)are more concentrated than other ions at the gauging site. The discharge, pH, EC,and the concentrations of major ions exhibited significant diurnal variation along the flow path. On the other hand, the amplitude of variation diminished from upstream to downstream along the flow path.The chemical weathering rate(Na^++K^++Mg^(2+)+Ca^(2+))was determined to be 10.9 t/yr/km^2. Moreover,further research indicated that the sampling method influenced the assessment of chemical weathering rates. When the sample was collected randomly in one diurnal cycle of hydrography, the estimated ionic flux could deviate-47%~73% based on estimated hourly data. In contrast, if three samples were collected at peak, base flow and the discharge decreasing rate starts to slow down in one diurnal cycle of hydrography, respectively, the deviation would be less than 15%. The smaller the diurnal variation of discharge, the smaller deviation calculated.展开更多
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolvin...The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.展开更多
[ Objective] Study on the photosynthesis and influencing factors in super high-yield combination C Liangyou H255. [ Method] The photosynthetic characteristies were measured at a hot and muggy day under natural conditi...[ Objective] Study on the photosynthesis and influencing factors in super high-yield combination C Liangyou H255. [ Method] The photosynthetic characteristies were measured at a hot and muggy day under natural conditions. [ Result] A respective single peak at 11:30 was observed in diurnal variation curves of net photosynthetic rate (Pn) and transpiration rate(Tr). Correlation analysis shows that Pn presents an extremely significant correlation with photon flux densities (PFD) of photosynthetically active radiation, in comparison assumes a significant correlation either with stomatal conductance (Gs) or with ambient CO2 concentration (Ca). [ Conclusion] Gs followed by PFD presented most influence on Pn of super high-yield combination C Liangyou H255.展开更多
Potentilla anserina L.and Elymus nutans Griseb.are dominant species in the subalpine meadows of China.Grazing is one of the most important factors that influence community structure and productivity of subalpine meado...Potentilla anserina L.and Elymus nutans Griseb.are dominant species in the subalpine meadows of China.Grazing is one of the most important factors that influence community structure and productivity of subalpine meadows.Understanding how grazing changes photosynthetic capability is essential for preservation and restoration of grasslands.However,information about the effects of grazing on photosynthetic capability remains inadequate.Experiments were conducted in fencing and grazing areas in the Qilian Mountains,Northwest China.The leaf gas exchange and photosynthetic curves of P.anserina and E.nutans were measured at different growth stages.Results showed that grazing decreased the values of leaf gas exchange parameters,such as net photosynthetic rate,stomatal conductance,transpiration rate,and intercellular CO2 concentration of P.anserina and E.nutans.In addition,grazing decreased the values of net photosynthetic rate-photosynthetically active radiation(PN-PAR)curve parameters,such as light-saturated net photosynthetic rate,apparent quantum efficiency,light compensation point,light saturation point,and dark respiration rate.Our results demonstrated that grazing was the primary limiting factor for photosynthesis of dominant grassland species in the study area.展开更多
Aims Ecological systems,especially soils,have been recently recognized as an important source of atmospheric nitric oxide(No).However,the study on the contribution of plants to atmospheric No budget is significantly l...Aims Ecological systems,especially soils,have been recently recognized as an important source of atmospheric nitric oxide(No).However,the study on the contribution of plants to atmospheric No budget is significantly lagged.The specific objectives of this study are to reveal the phylogenetic variation in No emission potential existing in various plant species and find out the possible leaf traits affecting No emission potential.Methods We measured No emission potential,leaf N and C content,C:N ratio,specific leaf area,net photosynthetic rate(Pn)and estimated photosynthetic N use efficiency(PNuE)of 88 plant species.Further investigation of the relationships between No emission potential and leaf traits were performed by simple linear regression analysis and pair-wise correlation coefficients analysis.Important Findingsmajor results are as follows:(1)No emission from plant species exhibited large variations,ranging from 0 to 41.7 nmol m^(−2) h^(−1),and the species frequency distributions of No emission potential could be fitted to a log-normal curve.(2)among 88 species,No emission potential was the highest in Podocarpus macrophyllus,but lowest in Zanthoxylum nitidum and Vernicia montana.(3)No emission potential has strong correlation to leaf N content,Pn and PNuE.The variations in No emission potential among diverse plant species may be closely related to leaf N level and net photosynthetic ability.展开更多
Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different s...Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.展开更多
文摘The net photosynthetic rate of flag leaves and influencing factors under saline sodic soil conditions were investigated at the full heading stage of rice. The net photosynthetic rate of rice leaves showed a double-peak curve in a day in both non-saline sodic and saline sodic soil treatments. The first peak of the net photosynthetic rate appeared at 9:00-10:00 and 9:00 in the saline sodic and non-saline sodic soil treatments, respectively, whereas the second peak both at 14:00. The midday depression of the net photosynthetic rate always appeared regardless of non-saline sodic or saline sodic soil conditions. In addition, the net photosynthetic rate significantly decreased in all day under saline sodic conditions compared with that under non-saline sodic conditions. Some differences were observed in correlation characters between the net photosynthetic rate and all influencing factors during 9:00-13:00. Under non-saline sodic conditions, the diurnal changes of the net photosynthetic rate in a day were mainly caused by stomatal conductance, and the limitation value and the stomatal factors served as determinants; whereas under saline sodic stress, the diurnal changes of the net photosynthetic rate in a day were mainly caused by non stomatal factors including light intensity and air temperature.
基金funded by the National Key Research and Development Program of China (2016YFD0300103)the earmarked fund for China Agriculture Research System (CARS-02-12)
文摘Over the past seven decades, the grain yield of maize(Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis. In order to reveal photosynthetic characters of elite inbred lines in different ears, a field experiment was conducted at the North China Plain of Shandong Province in China. Six parental lines of maize introduced in three eras(the 1960 s, 1980 s, and 2000 s) were investigated diurnal variation of gas exchange, chlorophyll fluorescence, and photosynthetic response characteristic at the grain filling stage. Compared to earlier parental lines, the 2000 s parental lines always had higher net photosynthetic rate(Pn) throughout the day, especially at noon, and a mid-day depression in Pn did not occur in all hybrids parental lines. Moreover, the stomatal conductance(Gs) and water use efficiency(WUE) of the 2000 s’ lines showed higher value than those of the 1960 s’ and 1980 s’ lines. The inbred lines differences in photosynthetic parameters were partly owing to their different quantum carboxylation efficiencies and light synthase activities. Simultaneously, the 2000 s parental lines exhibited lower light and CO2 compensation points, and their higher apparent quantum yield, and carboxylation efficiency. These suggested that the modern parental lines required lower light intensity and less CO2 to maintain a relatively high photosynthetic capacity, substantially increasing leaf physical quality and stress resistance. It provided crucial information of high photo-efficiency and stress-resistance breeding in maize.
基金funded by the State Key Basic Research and Development Plan(G1998010100).
文摘The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Pn) and dark respiration rate (DR) under saturation light intensity and appropriate temperature. 2) There were a little difference in light compensation point among them. Photo flux density (PFD) were about 360μmol/m2·s when Pn tended to zero. 3) When PFD>1 900 μmol/m2·s, photoinhibition occuried a-mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-12)
文摘[Objective]The aim was to measure photosynthetic characters of SC 205, a cassava cultivar, and explore the relationships of the net photosynthetic rate (Pn) with physiological and ecological factors. [Method] The diurnal variations of photosyn-thesis in leaves of SC205 were studied by LICOR-6400 portable photosynthesis system, and the relationships of the net photosynthetic rate (Pn) with physiological and ecological factors were studied by simple correlation analysis and path analysis. [Result] The curve of diurnal variation of Pn showed single peak at 10:00 am at 24.07 μ mol CO2 m2/s, without showing midday depression; the diurnal changes of stomatal conductance (Gs), transpiration rate (Tr), leaf temperature (Tl), air tempera-ture (Ta) and photosynthetic active radiation (PAR) al showed single peak curves, and there were positive relationships of Pn with Gs, Tr, Tl, Ta and PAR. The diur-nal variations of intercellular CO2 concentration (Ci), atmospheric CO2 concentration (Ca), relative humidity (RH) showed in a U-shape curve. There were highly signifi-cant positive correlation of Pn with Gs and PAR; the diurnal variation of Pn had highly significant negative correlations with Ci and Ca. The direct impact of physio-logical factors on Pn was as fol ows: Ci>Gs>Tl>Tr, and the direct impact of ecologi-cal factors was RH>PAR>Ca>Ta. [Conclusion] The research showed that Ci, Gs and Tr play very important roles in the changes of Pn among the physiological fac-tors, and PAR and Ca affect the changes of Pn among the ecological factors.
基金Supported by Guangxi Key R&D Program Project(GKAB18221091)Guilin Scientific Research and Planning Science and Technology Key Project(20160223-1)。
文摘[Objectives]This study was conducted to investigate the diurnal variations of photosynthetic and physiological characteristics in 3-year-old Kadsura coccinea(Lem.)A.C.Smith plants.[Methods]A Li-6400 portable photosynthetic system was used to study the diurnal variations of the photosynthetic physiological characteristics of K.coccinea.[Results]The diurnal variation of the net photosynthetic rate(Pn)of K.coccinea leaves showed a"double peak"curve,and there was a lunch break at noon.The maximum value of Pn[4.51 mmol/(m^(2)·s)]appeared at 10:00,and the daily average Pn was 3.98 mol/(m^(2)·s);and the stepwise regression analysis showed that photosynthetically active radiation(PAR)and stomatal conductance(Gs)were the main factors affecting Pn.The partial correlation analysis and path analysis showed that the order of effects on Pn was Gs>PAR.[Conclusions]This study provides a reference for further research on the development and utilization of K.coccinea.
基金supported by theNatural Science Foundation of China(Grant Nos.41471057,41571076,41201063)
文摘In glacierized catchments, glacier runoff typically shows a strong diurnal cycle in the ablation season(June-September). To elucidate the effect of these processes on the chemical weathering, fresh snowfall and water samples were collected and studied from the supraglacial river, proglacial river,and gauging site in Qiyi glacierized catchment Qilian Mountains, Northwestern China, in the summer of2011. The pH and electronic conductivity(EC) were determined in the field, and the concentrations of major ions(Na^+, K^+, Mg^(2+), Ca^(2+), Cl^-, SO_4^(2-), NO_3^-) were measured. The results indicated that EC linearly increased with increasing distance from the glacial snout, and the concentrations of major ions increased with increasing water-rock interaction time. Along the flow path of the glacier runoff, Na^+ and Cl^-are more concentrated than other ions in the supraglacial river while Mg^(2+) and SO_4^(2-)are more concentrated than other ions at the gauging site. The discharge, pH, EC,and the concentrations of major ions exhibited significant diurnal variation along the flow path. On the other hand, the amplitude of variation diminished from upstream to downstream along the flow path.The chemical weathering rate(Na^++K^++Mg^(2+)+Ca^(2+))was determined to be 10.9 t/yr/km^2. Moreover,further research indicated that the sampling method influenced the assessment of chemical weathering rates. When the sample was collected randomly in one diurnal cycle of hydrography, the estimated ionic flux could deviate-47%~73% based on estimated hourly data. In contrast, if three samples were collected at peak, base flow and the discharge decreasing rate starts to slow down in one diurnal cycle of hydrography, respectively, the deviation would be less than 15%. The smaller the diurnal variation of discharge, the smaller deviation calculated.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB417201)the National Natural Science Foundation of China (Grant Nos. 41075034,40930950,40975034,and 41075044)
文摘The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.
文摘[ Objective] Study on the photosynthesis and influencing factors in super high-yield combination C Liangyou H255. [ Method] The photosynthetic characteristies were measured at a hot and muggy day under natural conditions. [ Result] A respective single peak at 11:30 was observed in diurnal variation curves of net photosynthetic rate (Pn) and transpiration rate(Tr). Correlation analysis shows that Pn presents an extremely significant correlation with photon flux densities (PFD) of photosynthetically active radiation, in comparison assumes a significant correlation either with stomatal conductance (Gs) or with ambient CO2 concentration (Ca). [ Conclusion] Gs followed by PFD presented most influence on Pn of super high-yield combination C Liangyou H255.
基金financially supported by the National Natural Science Foundation of China(91025015,51178209)the Project of Arid Meteorological Science Research Foundation of China Meteorological Administration(IAM201608)
文摘Potentilla anserina L.and Elymus nutans Griseb.are dominant species in the subalpine meadows of China.Grazing is one of the most important factors that influence community structure and productivity of subalpine meadows.Understanding how grazing changes photosynthetic capability is essential for preservation and restoration of grasslands.However,information about the effects of grazing on photosynthetic capability remains inadequate.Experiments were conducted in fencing and grazing areas in the Qilian Mountains,Northwest China.The leaf gas exchange and photosynthetic curves of P.anserina and E.nutans were measured at different growth stages.Results showed that grazing decreased the values of leaf gas exchange parameters,such as net photosynthetic rate,stomatal conductance,transpiration rate,and intercellular CO2 concentration of P.anserina and E.nutans.In addition,grazing decreased the values of net photosynthetic rate-photosynthetically active radiation(PN-PAR)curve parameters,such as light-saturated net photosynthetic rate,apparent quantum efficiency,light compensation point,light saturation point,and dark respiration rate.Our results demonstrated that grazing was the primary limiting factor for photosynthesis of dominant grassland species in the study area.
基金This study was financially supported by the Natural Science Foundation of China(NSFC)(31300505,31260057,30930076,30670317)Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,Nanjing Institute of Soil Science,Chinese Academy of Science(Y412201449)+1 种基金China Postdoctoral Science Foundation(2012M521278)the Scholarship Award for Excellent Doctoral Student granted by the Chinese Ministry of Education.
文摘Aims Ecological systems,especially soils,have been recently recognized as an important source of atmospheric nitric oxide(No).However,the study on the contribution of plants to atmospheric No budget is significantly lagged.The specific objectives of this study are to reveal the phylogenetic variation in No emission potential existing in various plant species and find out the possible leaf traits affecting No emission potential.Methods We measured No emission potential,leaf N and C content,C:N ratio,specific leaf area,net photosynthetic rate(Pn)and estimated photosynthetic N use efficiency(PNuE)of 88 plant species.Further investigation of the relationships between No emission potential and leaf traits were performed by simple linear regression analysis and pair-wise correlation coefficients analysis.Important Findingsmajor results are as follows:(1)No emission from plant species exhibited large variations,ranging from 0 to 41.7 nmol m^(−2) h^(−1),and the species frequency distributions of No emission potential could be fitted to a log-normal curve.(2)among 88 species,No emission potential was the highest in Podocarpus macrophyllus,but lowest in Zanthoxylum nitidum and Vernicia montana.(3)No emission potential has strong correlation to leaf N content,Pn and PNuE.The variations in No emission potential among diverse plant species may be closely related to leaf N level and net photosynthetic ability.
基金Supported by"948"Project of the Ministry of Water Resources(2015-22)Key Technology R&D Program Project of Gansu Province(1204FKCA069)Key Scientific Research Project of Water Resources of Gansu Province(2012-255)
文摘Soil CO_2 emissions of terraces and slope farmland in loess hilly and gully regions were measured by using Infra Red Gas Analysis(IRGA),and the diurnal variation characteristics of soil respiration rate in different slope positions of terraces and slope farmland were analyzed.The results show that the diurnal variation curves of soil respiration rate of terraces and slope farmland in loess hilly and gully regions had a single peak.The soil respiration rate of terraces reached the peak during 13:00-15:00,while the soil respiration rate of slope farmland reached the peak from 11:00 to13:00,and it was the lowest at next 07:00.The daily average of soil respiration rate in slope farmland was 0.86μmol/(m^2·s),accounting for 93.48% of that of terraces.The daily average of soil respiration rate in different slope positions of terraces and slope farmland is shown as follows:the bottom of the slope>the middle of the slope>the top of the slope.At the top of the slope,the daily averages of soil respiration rate in terraces and slope farmland were the same;at the middle and bottom of the slope,the daily average of soil respiration rate in terraces was larger than that of slope farmland.