In order to improve the source water quality of drinking water and mitigate the load of drinking water treatment plant, a pilot test was conducted with integrated horizontal flow constructed wetlands to pretreat the w...In order to improve the source water quality of drinking water and mitigate the load of drinking water treatment plant, a pilot test was conducted with integrated horizontal flow constructed wetlands to pretreat the water supply in the reservoirs of Yellow River. Resuhs show that under the hydraulic loading rate of 4 m^3/( m^2 · d), the average removal rates of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen ( NH4 ^+ - N), nitrate nitrogen ( NO3 ^- - N), nitrite - nitrogen ( NO2^ - - N) and total phosphorus (TP) in the horizontal flow constructed wetlands are 49. 68% , 53.01%, 48.48%, 53.61% , 62. 57% and 49. 56%, re- spectively. The study on purifying mechanism of the constructed wetlands indicates that the disposal of contamination by subsurface wetlands is the combined actions of physical chemistry, plants and microorganism.展开更多
There are very serious water and sediment problems in the irrigated areas of northwest Shandong Province. In upper reaches of the irrigated area, the Yellow River water are widely used for farmland watering while leav...There are very serious water and sediment problems in the irrigated areas of northwest Shandong Province. In upper reaches of the irrigated area, the Yellow River water are widely used for farmland watering while leaving the ground water unusedion. But in the lower reaches, there is not enough surface water to be channeled for irrigation, so the ground water has always been over extracted, in some parts of the lower reaches, the descending water table caused the formation of funnel. Siltation in canals are very difficult to be cleared up, the drop of agriculture yield in the sandy land close to the channel head and along the main channels impair the living conditions of the local people. The conflicts between the excessive dependence on the Yellow River and the decreasing tendancy of water amount provided by the Yellow Ricer forces the local government to find new ways to solve the water resource problems. The answer could be: Using new technique for the irrigated system, pay more attention to the ground water development, and the construction and maintenance of wells.展开更多
A major problem in the lower Yellow River is the insufficient incoming water and excessive sediment supply, which results in serious deposition, continuous rise of the river bed, and austere flood control situation. T...A major problem in the lower Yellow River is the insufficient incoming water and excessive sediment supply, which results in serious deposition, continuous rise of the river bed, and austere flood control situation. To understand the sediment transport regularity of the lower Yellow River and determine the relationship between sedimentation, incoming water and sediment, and zone water diversion, a mathematical model of the sediment suitable for the characteristics of the lower Yellow River has been developed. This model is first rated and verified by large quantity of observed data, and it is then used to analyze silting reduction for the lower Yellow River by Xiaolangdi Reservoir’s operation, the relationship between zone water diversion and channel sedimentation, and critical equilibrium of sedimentation in the lower Yellow River. The threshold values of equilibrium of sedimentation in the lower Yellow River are estimated and they suggest that deposition in the lower Yellow River can be effectively reduced by the operation of regulating flow and sediment from Xiaolangdi Reservoir, water-soil conservation, and controlling water diversion along the lower Yellow River.展开更多
基金Sponsored by the National High Technology Research and Development Program (863) of China (Grant No.2006AA06Z303)the National Natural Sci-ence Foundation of China(Grant No.40671004)the Program for Young Academic Backbone of Harbin Normal University(Grant No.KGB200821)
文摘In order to improve the source water quality of drinking water and mitigate the load of drinking water treatment plant, a pilot test was conducted with integrated horizontal flow constructed wetlands to pretreat the water supply in the reservoirs of Yellow River. Resuhs show that under the hydraulic loading rate of 4 m^3/( m^2 · d), the average removal rates of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen ( NH4 ^+ - N), nitrate nitrogen ( NO3 ^- - N), nitrite - nitrogen ( NO2^ - - N) and total phosphorus (TP) in the horizontal flow constructed wetlands are 49. 68% , 53.01%, 48.48%, 53.61% , 62. 57% and 49. 56%, re- spectively. The study on purifying mechanism of the constructed wetlands indicates that the disposal of contamination by subsurface wetlands is the combined actions of physical chemistry, plants and microorganism.
文摘There are very serious water and sediment problems in the irrigated areas of northwest Shandong Province. In upper reaches of the irrigated area, the Yellow River water are widely used for farmland watering while leaving the ground water unusedion. But in the lower reaches, there is not enough surface water to be channeled for irrigation, so the ground water has always been over extracted, in some parts of the lower reaches, the descending water table caused the formation of funnel. Siltation in canals are very difficult to be cleared up, the drop of agriculture yield in the sandy land close to the channel head and along the main channels impair the living conditions of the local people. The conflicts between the excessive dependence on the Yellow River and the decreasing tendancy of water amount provided by the Yellow Ricer forces the local government to find new ways to solve the water resource problems. The answer could be: Using new technique for the irrigated system, pay more attention to the ground water development, and the construction and maintenance of wells.
文摘A major problem in the lower Yellow River is the insufficient incoming water and excessive sediment supply, which results in serious deposition, continuous rise of the river bed, and austere flood control situation. To understand the sediment transport regularity of the lower Yellow River and determine the relationship between sedimentation, incoming water and sediment, and zone water diversion, a mathematical model of the sediment suitable for the characteristics of the lower Yellow River has been developed. This model is first rated and verified by large quantity of observed data, and it is then used to analyze silting reduction for the lower Yellow River by Xiaolangdi Reservoir’s operation, the relationship between zone water diversion and channel sedimentation, and critical equilibrium of sedimentation in the lower Yellow River. The threshold values of equilibrium of sedimentation in the lower Yellow River are estimated and they suggest that deposition in the lower Yellow River can be effectively reduced by the operation of regulating flow and sediment from Xiaolangdi Reservoir, water-soil conservation, and controlling water diversion along the lower Yellow River.