Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD...Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.展开更多
BACKGROUND Endoscopic full-thickness resection(EFTR)of gastric submucosal tumors(SMTs)is safe and effective;however,postoperative wound management is equally important.Literature on suturing following EFTR for large(...BACKGROUND Endoscopic full-thickness resection(EFTR)of gastric submucosal tumors(SMTs)is safe and effective;however,postoperative wound management is equally important.Literature on suturing following EFTR for large(≥3 cm)SMTs is scarce and limited.AIM To evaluate the efficacy and clinical value of double-nylon purse-string suture in closing postoperative wounds following EFTR of large(≥3 cm)SMTs.METHODS We retrospectively analyzed the data of 85 patients with gastric SMTs in the fundus of the stomach or in the lesser curvature of the gastric body whose wounds were treated with double-nylon purse-string sutures after successful tumor resection at the Endoscopy Center of Renmin Hospital of Wuhan University.The operative,postoperative,and follow-up conditions of the patients were evaluated.RESULTS All tumors were completely resected using EFTR.36(42.35%)patients had tumors located in the fundus of the stomach,and 49(57.65%)had tumors located in the body of the stomach.All patients underwent suturing with double-nylon sutures after EFTR without laparoscopic assistance or further surgical treatment.Postoperative fever and stomach pain were reported in 13(15.29%)and 14(16.47%)patients,respectively.No serious adverse events occurred during the intraoperative or postoperative periods.A postoperative review of all patients revealed no residual or recurrent lesions.CONCLUSION Double-nylon purse-string sutures can be used to successfully close wounds that cannot be completely closed with a single nylon suture,especially for large(≥3 cm)EFTR wounds in SMTs.展开更多
Myiasis is a disease caused by the invasion and colonization of human tissues and organs by the larvae of flies.This is manifested by the formation of necrotic tissue in the lesion,the colonization of fly eggs and the...Myiasis is a disease caused by the invasion and colonization of human tissues and organs by the larvae of flies.This is manifested by the formation of necrotic tissue in the lesion,the colonization of fly eggs and the spread of fly larvae.This disease is mostly found in areas with poor sanitary conditions.Poor wound care,necrotic tissue formation,reduced immunity,and frequent contact with flies are risk factors for this disease.Myiasis can be divided into obligate and facultative parasitism,^([1])while some scholars have classified myiasis according to its location.^([2])In addition,some cases of myiasis are secondary to wound infection or poor surgical maintenance.^([3,4]).展开更多
BACKGROUND Shikonin is a natural remedy that is effective at treating diabetic wounds.NFAT5 is a potential therapeutic target for diabetes,and mitochondrial function is essen-tial for wound healing.However,the relatio...BACKGROUND Shikonin is a natural remedy that is effective at treating diabetic wounds.NFAT5 is a potential therapeutic target for diabetes,and mitochondrial function is essen-tial for wound healing.However,the relationship among Shikonin,NFAT5,and mitochondrial function has not been thoroughly studied.Here,we offer new per-spectives on the advantages of shikonin for managing diabetes.AIM To assess the therapeutic mechanism of shikonin in diabetic wounds,its rela-tionship with NFAT5,and its protection of mitochondrial function.METHODS Hypertonic cell and diabetic wound mouse models were established.NFAT5 expression was measured through western blotting and immunofluorescence,in vivo and in vitro.Mitochondrial function was evaluated using reactive oxygen species(ROS)detection and JC-1 and Calcein AM dyes.Mitochondrial structures were observed using transmission electron microscopy.The NFAT5/AMPK pathway was analyzed using a transfection vector and an inhibitor.The effect of shikonin on cells under hypertonic conditions via the NFAT5/AMPK pathway was assessed using western blotting.RESULTS Shikonin treatment preserved HaCaT cell viability,while significantly reducing cyclooxygenase-2 expression levels in a high-glucose environment(P<0.05).Additionally,shikonin maintained mitochondrial morphology,enhanced membrane potential,reduced membrane permeability,and decreased ROS levels in HaCaT cells under hyperosmolar stress.Furthermore,shikonin promoted wound healing in diabetic mice(P<0.05).Shikonin also inhibited NFAT5,in vivo and in vitro(P<0.05).Shikonin treatment reduced NFAT5 expression levels,subsequently inhibiting AMPK expression in vitro(P<0.05).Finally,shikonin inhibited several key downstream molecules of the NFAT5/AMPK pathway,including mammalian target of rapamycin,protein kinase B,nuclear factor kappa-light-chain-enhancer of activated B cells,and inducible nitric oxide synthase(P<0.05).CONCLUSION Shikonin protects mitochondria via the NFAT5/AMPK-related pathway and enhances wound healing in diabetes.展开更多
BACKGROUND Wound healing is a complicated process that can be heavily influenced by patient comorbidities,in some cases leading to a chronic non-healing wound.Evidence presented in the medical literature supporting th...BACKGROUND Wound healing is a complicated process that can be heavily influenced by patient comorbidities,in some cases leading to a chronic non-healing wound.Evidence presented in the medical literature supporting the clinical use of autologous platelet-rich plasma(PRP)in treatment of such wounds is becoming increasingly compelling.Mechanisms involved include complex interactions between the patient’s thrombocytes,cytokines,and growth factors.CASE SUMMARY We present a case of a 72-year-old male patient with a long-standing chronic wound and multiple comorbidities.Over the course of more than 7 months,the patient was unsuccessfully treated with all routinely used measures,including different dressing approaches.Multiple antibiotic regimens were administered for wound infection,with repeated evaluation of microbiological swab results.Finally,after three PRP applications,the wound showed clinical improvement with complete restitution of the epithelial layer of the skin.CONCLUSION PRP treatment may be beneficial to reduce healing time in chronic wounds.展开更多
Purpose: The aim is to show epidemiological, clinical and etiological characteristics of palpebral wounds. Methodology: This was a retrospective study focusing on patients with an eyelid wound, over a 10-year period f...Purpose: The aim is to show epidemiological, clinical and etiological characteristics of palpebral wounds. Methodology: This was a retrospective study focusing on patients with an eyelid wound, over a 10-year period from 2012 to 2021. We collected and analyzed the data using Excel. Results: The frequency of eyelid wounds was 0.1%. The average age of our patients was 19.38 years with a range of 1 and 62 years. The sex ratio was 3.7. Eighty-one percent of patients lived in Dakar. Fifty-seven percent (57%) of patients consulted less than 24 hours after the trauma and 7% of patients on D1. The circumstances were brawls (11%), domestic accidents (9%), road accidents (6%), and work accidents (6%). We noted 1 case of dog bite. Thirteen patients presented with post-traumatic decreased visual acuity. Involvement of the isolated upper eyelid was noted in 40% of cases and both eyelids in 15% of cases. Involvement of the lacrimal ducts was noted in 17% of cases, and that of the free edge in 21% of cases. Eyelid wounds were associated with eyeball damage in 21% of cases. Various associated lesions were observed. Ninety-one percent of patients received surgical treatment. Three cases of superinfections, 1 case of conjunctival granuloma and 1 case of phthysis of the eyeball with postoperative retinal detachment were noted. Conclusion: Eyelid sores are relatively common in our context. They require rapid surgical treatment in order to preserve the functional and aesthetic prognosis. .展开更多
Tunneling wounds create passageways underneath the skin surface with varying sizes and shapes and can have twists and turns,making their treatment extremely difficult.Available wound care solutions only cater to super...Tunneling wounds create passageways underneath the skin surface with varying sizes and shapes and can have twists and turns,making their treatment extremely difficult.Available wound care solutions only cater to superficial wounds,and untreated tunneling wounds pose major health concerns.This study aims to fulfill this challenge by fabricating tunnel wound fillers(TWFs)made of natural polymers that mimic the dermal extracellular matrix.In this study,cellulose microfibers(CMFs)derived from banana stem and fish skin-derived collagen were used to formulate bio-inks with varying CMF contents(25,50,and 75 mg).Tri-layered(CMFs,primary and secondary collagen coatings),drug-eluting(Baneocin),and cell-laden(human mesenchymal stem cells)TWFs were three-dimensional(3D)-printed and extensively characterized.CMFs showed the most suitable rheological properties for 3D printing at 50 mg concentration.The Alamar Blue data showed significantly increased cell proliferation from Day 1 to Day 7,and scratch tests used to evaluate in vitro wound healing revealed that the best coverage of the wound area was achieved using CMFs in combination with collagen and alginate.Finally,the TWF showed promising capability and tunability in terms of wound shape and size upon testing on a chicken tissue model.The results demonstrate the tremendous potential of TWFs in treating deep tunneling wounds with unique advantages,such as patient-specific customization,good wound exudate absorption capability while releasing wound healing drugs,and the inclusion of stem cells for accelerated healing and tissue regeneration.展开更多
Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on w...Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on wound healing.We investigated the cluster of differentiation 31(CD31)expression,serum fibronectin(FN),and vascular endothelial growth factor(VEGF)levels in SPF rats with induced wounds to elucidate the mechanism behind Shixiang plaster’s effectiveness.We investigated the effect and explored the role of Shixiang plaster on the expression of CD31,serum FN,and VEGF in chronic wounds.Methods:The study involved 36 SPF rats divided into model,rb-bFGF,and Shixiang plaster groups.Penicillin was injected into the rats before modelling for 3 days to prevent infection.The skin was excised 2 cm below the horizontal line of the inferior border of the shoulder bone in the middle of the rat column up to the deep fascial layer and inoculated with a certain concentration of Staphylococcus aureus;the wound was covered aseptically for 3 days.The trauma area of the rats was observed at 3,7,and 14 days,respectively.Histopathology was observed using haematoxylin eosin and Masson staining.CD31 expression was detected using immunohistochemistry staining.FN and VEGF expression was detected using serum ELISA.Statistical analyses were carried out by the method of SPSS.Results:Regarding wound morphology,at 3 days,the recovery area of the Shixiang plaster group was larger than that of the other two groups,at 7 days,the wound healing rate of the Shixiang plaster group was significantly higher,and at 14 days,the wounds of the Shixiang plaster group had been mostly healed,with a healing rate of 98.3%.Haematoxylin eosin staining revealed a large amount of granulation tissue at 3 days in the Shixiang plaster group,and the epidermal scales disappeared at 14 days,with thinner epidermal thickness at 1 lesion and a large reduction in inflammatory cell infiltration.Masson staining showed that at 3,7,and 14 days,blue staining was the most abundant and deeper in the Shixiang plaster group,with richer collagen and a compact tissue matrix.Immunohistochemical testing showed strong positive expression of CD31 in the Shixiang plaster group,with abundant neovascularisation and large official lumens extending towards the surface of the wound.Statistically significant elevated expression of FN at 7 and 14 days was determined by ELISA in the Shixiang plaster group,and VEGF expression was significantly increased at 7 days,but expression had been expressed at a low level at 14 days.Conclusion:Shixiang plaster exhibits remarkable efficacy in healing chronic wounds.The proposed mechanism involves FN’s promotion of angiogenesis and cell proliferation,VEGF’s impact on angiogenesis and inflammation,and CD31’s regulatory role in inhibiting inflammation while promoting angiogenesis.展开更多
Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wo...Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wound healing, providing a structural scaffold and signaling cues for cell migration and proliferation. This study investigates the potential of BC as a scaffold for ECM production and its effect on in vivo wound healing. In this work, the bacterial cellulose fermentation process is modified by the addition of Green Propolis and Usnic acid to the culture medium and natural materials before the bacteria are inoculated. In vivo behaviour using natural membranes for regenerative medicine is presented and it is in edit. Overall, our findings demonstrate the potential of BC as a scaffold for ECM production and its beneficial effects on in vivo wound healing. BC-based dressings may offer a novel approach to promoting wound healing and tissue regeneration in clinical settings. Further studies are warranted to optimize BC-based therapies and explore their full potential in regenerative medicine.展开更多
BACKGROUND The incidence of chronic wounds is rising due to an aging population and lifestyle changes in our country.In addition,as the disease spectrum evolves,chronic wounds have become common clinical issues that s...BACKGROUND The incidence of chronic wounds is rising due to an aging population and lifestyle changes in our country.In addition,as the disease spectrum evolves,chronic wounds have become common clinical issues that seriously threaten health and impose significant social and economic burdens.AIM To investigate how depression,anxiety,peripheral blood inflammatory factors,and stress levels affect therapeutic outcomes in patients with chronic wounds.METHODS Retrospectively collected clinical data from 110 patients with chronic wounds treated at Changde Hospital,Xiangya School of Medicine,Central South University(The First People’s Hospital of Changde City)between January 2021 and December 2023,categorizing them into effective and ineffective groups based on treatment effects.Differences between both groups were analyzed using univariate analysis,independent risk factors identified via logistic regression,and their predictive value assessed through receiver operating characteristic analysis.RESULTS Following treatment,95 cases were classified as the effective group(cured or improved),while 15 cases with improvement formed the ineffective group.Significant differences between both groups were noted in wound area,infection status,daily bed time,Hamilton Anxiety Rating Scale(HAMA)scores,Hamilton Depression Rating Scale(HAMD)scores,and levels of interleukin-6,tumor necrosis factor-alpha,and superoxide dismutase(P<0.05).Logistic regression analysis identified a wound area≥7 cm^(2),HAMA≥9 scores,and HAMD≥8 scores were independent risk factors for ineffective treatment in patients with chronic wounds(P<0.05).The receiver operating characteristic curve analysis revealed that the area under the curve for ineffective treatment based on wound area,HAMA,and HAMD was 0.767,0.805,and 0.768 respectively.CONCLUSION Wound size,anxiety,and depression are significant factors influencing the therapeutic outcomes in patients with chronic wounds that require careful attention,alongside the development of appropriate strategies.展开更多
BACKGROUND Non-Hodgkin's lymphoma(NHL)is a malignant tumor that originates from the lymphoid tissues and can potentially affect numerous organs within the body.Among these,the skin stands out as one of the primary...BACKGROUND Non-Hodgkin's lymphoma(NHL)is a malignant tumor that originates from the lymphoid tissues and can potentially affect numerous organs within the body.Among these,the skin stands out as one of the primary sites affected by NHL,often presenting with multiple extra-nodal manifestations.In this report,we present an unusual case of NHL involving chronic wounds in the lower extremities that were difficult to heal.The scars were successfully treated using radiotherapy in combination with extended excision debridement and peroneal artery perforator flap grafting,resulting in satisfactory outcomes.CASE SUMMARY A 19-year-old male patient presented with ulceration of the skin on the left calf near the ankle accompanied by purulent discharge.Subsequent pathologic biopsy confirmed a diagnosis of NHL(extranodal NK/T-cell lymphoma,nasal type).Initial treatment comprised local radiotherapy and wound care;however,the wound exhibited prolonged non-healing.Consequently,the patient underwent a series of interventions including radiotherapy,wound enlargement excision debridement,and peroneal artery perforator flap grafting.Ultimately,successful healing was achieved with favorable postoperative outcomes characterized by good texture of the flap without any signs of rupture or infection.CONCLUSION The combination of radiotherapy,wound enlargement excision debridement,and peroneal artery perforator flap grafting may present a favorable treatment modality for chronic non-healing lower leg wounds resulting from NHL.展开更多
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ...Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.展开更多
A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound sit...A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site.展开更多
The research status of continuous nursing of patients with chronic wounds is reviewed.Since the research on continuous nursing of chronic wound patients in China is still in the initial stage,if necessary,learn from f...The research status of continuous nursing of patients with chronic wounds is reviewed.Since the research on continuous nursing of chronic wound patients in China is still in the initial stage,if necessary,learn from foreign experience,improve relevant systems,develop corresponding evaluation tools,actively implement telemedicine,and carry out hospital-community linkage models,etc.to provide high-quality nursing services for patients with chronic wounds.展开更多
After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
Objective:To evaluate the activity of selected Ethiopian medicinal plants traditionally used for wound treatment against wound-causing bacteria.Methods:Samples of medicinal plants(Achyranthes aspera,Brucea antidysente...Objective:To evaluate the activity of selected Ethiopian medicinal plants traditionally used for wound treatment against wound-causing bacteria.Methods:Samples of medicinal plants(Achyranthes aspera,Brucea antidysenteriea,Datura stramonium,Croton macrostachyus,Acokanthera xchimperi.,Phytolacca dodecandra,Milhttia ferruginea,and Solanum incanum)were extracted using absolute methanol and water and tested for their antimicrobial activities against clinical isolates and standard strains of wound-causing bacteria using agar well diffusion and micro titer plate methods.Results:Most of the plant extracts had antibacterial activities,among which Acokanthera schimperi and Brucea antidysenteriea inhibited growth of 100%and 35%of the test organisms,respectively.Methanolic extracts had higher activities compared with their corresponding aqueous extracts.The most susceptible organism to the extracts was Streptococcus pyogens while the most resistant were Escherichia coli and Proteus vulgaris.Conclusions:This finding justifies the use of the plants in wound healing and their potential activity against woundcausing bacteria.Their toxicity level and antimicrobial activity with different extraction solvents should further be studied to use them as sources and templates for the synthesis of drugs to control wound and other disease-causing bacteria.展开更多
BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic...BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic refractory wounds.The current therapeutic regimens often lead to prolonged hospital stay and higher healthcare costs.Concentrated growth factor(CGF)is a novel blood extract that contains various growth factors,platelets,and fibrins to promote wound healing process.However,there has been little research reported on the treatment of lower extremity wounds with CGF.CASE SUMMARY A 37-year-old man,without any past medical history,presented an ulcerated chronic wound on his right lower leg.The skin defect exhibited clear boundaries,with a size of 2.0 cm×3.5 cm.The depth of wound was up to the layer of deep fascia.Staphylococcus aureus was detected by bacterial culture.The final diagnosis was right lower extremity ulcers with infection.Cefathiamidine,silver sulfadiazine,and mupirocin cream were applied to control the infection.CGF gel was prepared from the patient’s blood sample,and was used to cover the wound after thorough debridement.The skin wound was successfully healed after three times of CGF treatment.CONCLUSION CGF displays an excellent wound healing promoting effect in patients with lowerextremity chronic refractory wounds.展开更多
BACKGROUND Impaired wound healing can be associated with different pathological states.Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide.Mesenchymal stem cells(MSCs)pos...BACKGROUND Impaired wound healing can be associated with different pathological states.Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide.Mesenchymal stem cells(MSCs)possess the ability to regenerate tissues by secreting factors involved in promoting cell migration,proliferation and differentiation,while suppressing immune reactions.Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIM To enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODS Human umbilical cord MSCs(hU-MSCs)were isolated and characterized by surface markers,CD105,vimentin and CD90.For preconditioning,hU-MSCs were treated with isorhamnetin after selection of the optimized concentration(5μmol/L)by cytotoxicity analysis.The migration potential of these MSCs was analyzed by the in vitro scratch assay.The healing potential of normal,and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound.Normal,and preconditioned MSCs(IH+MSCs)were transplanted after 72 h of burn injury and observed for 2 wk.Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTS The scratch assay analysis showed a significant reduction in the scratch area in the case of IH+MSCs compared to the normal untreated MSCs at 24 h,while complete closure of the scratch area was observed at 48 h.Histological analysis showed reduced inflammation,completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH+MSCs.Gene expression analysis was time dependent and more pronounced in the case of IH+MSCs.Interleukin(IL)-1β,IL-6 and Bcl-2 associated X genes showed significant downregulation,while transforming growth factorβ,vascular endothelial growth factor,Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound,showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSION Preconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation,and improving tissue architecture and wound healing.The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.展开更多
Background: Ballistics gelatin is a common tissue surrogate used in bacterial contamination models for projectile wounds. Although these studies have demonstrated that bacteria are transferred from the surface of the ...Background: Ballistics gelatin is a common tissue surrogate used in bacterial contamination models for projectile wounds. Although these studies have demonstrated that bacteria are transferred from the surface of the gelatin to the wound track by a projectile, quantifiable results have been inconsistent and not repeatable in successive tests.Methods: In this study, five areas of a typical contamination model in which bacterial recovery or survival are affected were identified for optimization. The first was a contaminated "skin" surrogate, where the novel use of vacuum filtration of a bacterial culture and buffer onto filter paper was employed. The other possibly problematic areas of the bacterial distribution model included the determination of bacterial survival when the contamination model is dried, survival in solid and molten gelatin, and the effect of high-intensity lights used for recording high-speed video.Results: Vacuum filtration of bacteria and buffer resulted in a consistent bacterial distribution and recovery. The use of phosphate buffer M9(pH 7) aided in neutralizing the ballistics gelatin and improving bacterial survival in solid gelatin. Additionally, the use of high-intensity lights to record high-speed video and the use of a 42℃ water bath to melt the gelatin were found to be bactericidal for gram-positive and gram-negative bacteria.Conclusion: Multiple areas of a typical contamination model in which bacterial survival may be impeded were identified, and methods were proposed to improve survival in each area. These methods may be used to optimize the results of bacterial contamination models for medical applications, such as understanding the progression of infection in penetrating wounds and to identify possible sources of contamination for forensic purposes.展开更多
In this case study,we analyzed the wound-healing process of a patient with a chronic wound who underwent fire needle treatment,and we tracked the coverage of granulation tissue and decrease of slough and exudate.An 85...In this case study,we analyzed the wound-healing process of a patient with a chronic wound who underwent fire needle treatment,and we tracked the coverage of granulation tissue and decrease of slough and exudate.An 85-year-old man had repeated right shoulder and back pain,itching,and skin festering for more than 1.5 years.A fire needle was administered combined with moist dressing once every 5 days to promote wound healing.After six rounds of fire needle treatment,granulation tissue formed over the surface of the wound base,the depth of the wound had become shallow,and the wound area was reduced.No complications occurred during the intervention.Fire needle therapy combined with a moist wound-healing dressing can be an effective alternative approach in managing chronic wounds.展开更多
文摘Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.
基金This observational study was approved by the Ethics Committee of Renmin Hospital of Wuhan University.
文摘BACKGROUND Endoscopic full-thickness resection(EFTR)of gastric submucosal tumors(SMTs)is safe and effective;however,postoperative wound management is equally important.Literature on suturing following EFTR for large(≥3 cm)SMTs is scarce and limited.AIM To evaluate the efficacy and clinical value of double-nylon purse-string suture in closing postoperative wounds following EFTR of large(≥3 cm)SMTs.METHODS We retrospectively analyzed the data of 85 patients with gastric SMTs in the fundus of the stomach or in the lesser curvature of the gastric body whose wounds were treated with double-nylon purse-string sutures after successful tumor resection at the Endoscopy Center of Renmin Hospital of Wuhan University.The operative,postoperative,and follow-up conditions of the patients were evaluated.RESULTS All tumors were completely resected using EFTR.36(42.35%)patients had tumors located in the fundus of the stomach,and 49(57.65%)had tumors located in the body of the stomach.All patients underwent suturing with double-nylon sutures after EFTR without laparoscopic assistance or further surgical treatment.Postoperative fever and stomach pain were reported in 13(15.29%)and 14(16.47%)patients,respectively.No serious adverse events occurred during the intraoperative or postoperative periods.A postoperative review of all patients revealed no residual or recurrent lesions.CONCLUSION Double-nylon purse-string sutures can be used to successfully close wounds that cannot be completely closed with a single nylon suture,especially for large(≥3 cm)EFTR wounds in SMTs.
文摘Myiasis is a disease caused by the invasion and colonization of human tissues and organs by the larvae of flies.This is manifested by the formation of necrotic tissue in the lesion,the colonization of fly eggs and the spread of fly larvae.This disease is mostly found in areas with poor sanitary conditions.Poor wound care,necrotic tissue formation,reduced immunity,and frequent contact with flies are risk factors for this disease.Myiasis can be divided into obligate and facultative parasitism,^([1])while some scholars have classified myiasis according to its location.^([2])In addition,some cases of myiasis are secondary to wound infection or poor surgical maintenance.^([3,4]).
基金Supported by National Natural Science Foundation of China,No.82104862Zhejiang Provincial Natural Science Foundation of China,No.LTY22E030003Scientific Research Project Foundation of Zhejiang Chinese Medical University,No.2023FSYYZZ01.
文摘BACKGROUND Shikonin is a natural remedy that is effective at treating diabetic wounds.NFAT5 is a potential therapeutic target for diabetes,and mitochondrial function is essen-tial for wound healing.However,the relationship among Shikonin,NFAT5,and mitochondrial function has not been thoroughly studied.Here,we offer new per-spectives on the advantages of shikonin for managing diabetes.AIM To assess the therapeutic mechanism of shikonin in diabetic wounds,its rela-tionship with NFAT5,and its protection of mitochondrial function.METHODS Hypertonic cell and diabetic wound mouse models were established.NFAT5 expression was measured through western blotting and immunofluorescence,in vivo and in vitro.Mitochondrial function was evaluated using reactive oxygen species(ROS)detection and JC-1 and Calcein AM dyes.Mitochondrial structures were observed using transmission electron microscopy.The NFAT5/AMPK pathway was analyzed using a transfection vector and an inhibitor.The effect of shikonin on cells under hypertonic conditions via the NFAT5/AMPK pathway was assessed using western blotting.RESULTS Shikonin treatment preserved HaCaT cell viability,while significantly reducing cyclooxygenase-2 expression levels in a high-glucose environment(P<0.05).Additionally,shikonin maintained mitochondrial morphology,enhanced membrane potential,reduced membrane permeability,and decreased ROS levels in HaCaT cells under hyperosmolar stress.Furthermore,shikonin promoted wound healing in diabetic mice(P<0.05).Shikonin also inhibited NFAT5,in vivo and in vitro(P<0.05).Shikonin treatment reduced NFAT5 expression levels,subsequently inhibiting AMPK expression in vitro(P<0.05).Finally,shikonin inhibited several key downstream molecules of the NFAT5/AMPK pathway,including mammalian target of rapamycin,protein kinase B,nuclear factor kappa-light-chain-enhancer of activated B cells,and inducible nitric oxide synthase(P<0.05).CONCLUSION Shikonin protects mitochondria via the NFAT5/AMPK-related pathway and enhances wound healing in diabetes.
文摘BACKGROUND Wound healing is a complicated process that can be heavily influenced by patient comorbidities,in some cases leading to a chronic non-healing wound.Evidence presented in the medical literature supporting the clinical use of autologous platelet-rich plasma(PRP)in treatment of such wounds is becoming increasingly compelling.Mechanisms involved include complex interactions between the patient’s thrombocytes,cytokines,and growth factors.CASE SUMMARY We present a case of a 72-year-old male patient with a long-standing chronic wound and multiple comorbidities.Over the course of more than 7 months,the patient was unsuccessfully treated with all routinely used measures,including different dressing approaches.Multiple antibiotic regimens were administered for wound infection,with repeated evaluation of microbiological swab results.Finally,after three PRP applications,the wound showed clinical improvement with complete restitution of the epithelial layer of the skin.CONCLUSION PRP treatment may be beneficial to reduce healing time in chronic wounds.
文摘Purpose: The aim is to show epidemiological, clinical and etiological characteristics of palpebral wounds. Methodology: This was a retrospective study focusing on patients with an eyelid wound, over a 10-year period from 2012 to 2021. We collected and analyzed the data using Excel. Results: The frequency of eyelid wounds was 0.1%. The average age of our patients was 19.38 years with a range of 1 and 62 years. The sex ratio was 3.7. Eighty-one percent of patients lived in Dakar. Fifty-seven percent (57%) of patients consulted less than 24 hours after the trauma and 7% of patients on D1. The circumstances were brawls (11%), domestic accidents (9%), road accidents (6%), and work accidents (6%). We noted 1 case of dog bite. Thirteen patients presented with post-traumatic decreased visual acuity. Involvement of the isolated upper eyelid was noted in 40% of cases and both eyelids in 15% of cases. Involvement of the lacrimal ducts was noted in 17% of cases, and that of the free edge in 21% of cases. Eyelid wounds were associated with eyeball damage in 21% of cases. Various associated lesions were observed. Ninety-one percent of patients received surgical treatment. Three cases of superinfections, 1 case of conjunctival granuloma and 1 case of phthysis of the eyeball with postoperative retinal detachment were noted. Conclusion: Eyelid sores are relatively common in our context. They require rapid surgical treatment in order to preserve the functional and aesthetic prognosis. .
基金supported by the start-up funds from New York University Abu Dhabipartially carried out using the Core Technology Platforms resources at New York University Abu Dhabi。
文摘Tunneling wounds create passageways underneath the skin surface with varying sizes and shapes and can have twists and turns,making their treatment extremely difficult.Available wound care solutions only cater to superficial wounds,and untreated tunneling wounds pose major health concerns.This study aims to fulfill this challenge by fabricating tunnel wound fillers(TWFs)made of natural polymers that mimic the dermal extracellular matrix.In this study,cellulose microfibers(CMFs)derived from banana stem and fish skin-derived collagen were used to formulate bio-inks with varying CMF contents(25,50,and 75 mg).Tri-layered(CMFs,primary and secondary collagen coatings),drug-eluting(Baneocin),and cell-laden(human mesenchymal stem cells)TWFs were three-dimensional(3D)-printed and extensively characterized.CMFs showed the most suitable rheological properties for 3D printing at 50 mg concentration.The Alamar Blue data showed significantly increased cell proliferation from Day 1 to Day 7,and scratch tests used to evaluate in vitro wound healing revealed that the best coverage of the wound area was achieved using CMFs in combination with collagen and alginate.Finally,the TWF showed promising capability and tunability in terms of wound shape and size upon testing on a chicken tissue model.The results demonstrate the tremendous potential of TWFs in treating deep tunneling wounds with unique advantages,such as patient-specific customization,good wound exudate absorption capability while releasing wound healing drugs,and the inclusion of stem cells for accelerated healing and tissue regeneration.
基金supported by the Guizhou Provincial Traditional Chinese Medicine Administration Traditional Chinese Medicine and Ethnic Medicine Scientific Research Project(Project number:QZYY-2023-013).
文摘Background:Chronic wounds pose a significant surgical challenge,often requiring traditional treatments with limited efficacy.This study explores the promising impact of Shixiang plaster,a classic Chinese ointment,on wound healing.We investigated the cluster of differentiation 31(CD31)expression,serum fibronectin(FN),and vascular endothelial growth factor(VEGF)levels in SPF rats with induced wounds to elucidate the mechanism behind Shixiang plaster’s effectiveness.We investigated the effect and explored the role of Shixiang plaster on the expression of CD31,serum FN,and VEGF in chronic wounds.Methods:The study involved 36 SPF rats divided into model,rb-bFGF,and Shixiang plaster groups.Penicillin was injected into the rats before modelling for 3 days to prevent infection.The skin was excised 2 cm below the horizontal line of the inferior border of the shoulder bone in the middle of the rat column up to the deep fascial layer and inoculated with a certain concentration of Staphylococcus aureus;the wound was covered aseptically for 3 days.The trauma area of the rats was observed at 3,7,and 14 days,respectively.Histopathology was observed using haematoxylin eosin and Masson staining.CD31 expression was detected using immunohistochemistry staining.FN and VEGF expression was detected using serum ELISA.Statistical analyses were carried out by the method of SPSS.Results:Regarding wound morphology,at 3 days,the recovery area of the Shixiang plaster group was larger than that of the other two groups,at 7 days,the wound healing rate of the Shixiang plaster group was significantly higher,and at 14 days,the wounds of the Shixiang plaster group had been mostly healed,with a healing rate of 98.3%.Haematoxylin eosin staining revealed a large amount of granulation tissue at 3 days in the Shixiang plaster group,and the epidermal scales disappeared at 14 days,with thinner epidermal thickness at 1 lesion and a large reduction in inflammatory cell infiltration.Masson staining showed that at 3,7,and 14 days,blue staining was the most abundant and deeper in the Shixiang plaster group,with richer collagen and a compact tissue matrix.Immunohistochemical testing showed strong positive expression of CD31 in the Shixiang plaster group,with abundant neovascularisation and large official lumens extending towards the surface of the wound.Statistically significant elevated expression of FN at 7 and 14 days was determined by ELISA in the Shixiang plaster group,and VEGF expression was significantly increased at 7 days,but expression had been expressed at a low level at 14 days.Conclusion:Shixiang plaster exhibits remarkable efficacy in healing chronic wounds.The proposed mechanism involves FN’s promotion of angiogenesis and cell proliferation,VEGF’s impact on angiogenesis and inflammation,and CD31’s regulatory role in inhibiting inflammation while promoting angiogenesis.
文摘Bacterial cellulose (BC) is a versatile biomaterial with unique properties that make it promising for various biomedical applications, including wound healing. The extracellular matrix (ECM) plays a crucial role in wound healing, providing a structural scaffold and signaling cues for cell migration and proliferation. This study investigates the potential of BC as a scaffold for ECM production and its effect on in vivo wound healing. In this work, the bacterial cellulose fermentation process is modified by the addition of Green Propolis and Usnic acid to the culture medium and natural materials before the bacteria are inoculated. In vivo behaviour using natural membranes for regenerative medicine is presented and it is in edit. Overall, our findings demonstrate the potential of BC as a scaffold for ECM production and its beneficial effects on in vivo wound healing. BC-based dressings may offer a novel approach to promoting wound healing and tissue regeneration in clinical settings. Further studies are warranted to optimize BC-based therapies and explore their full potential in regenerative medicine.
文摘BACKGROUND The incidence of chronic wounds is rising due to an aging population and lifestyle changes in our country.In addition,as the disease spectrum evolves,chronic wounds have become common clinical issues that seriously threaten health and impose significant social and economic burdens.AIM To investigate how depression,anxiety,peripheral blood inflammatory factors,and stress levels affect therapeutic outcomes in patients with chronic wounds.METHODS Retrospectively collected clinical data from 110 patients with chronic wounds treated at Changde Hospital,Xiangya School of Medicine,Central South University(The First People’s Hospital of Changde City)between January 2021 and December 2023,categorizing them into effective and ineffective groups based on treatment effects.Differences between both groups were analyzed using univariate analysis,independent risk factors identified via logistic regression,and their predictive value assessed through receiver operating characteristic analysis.RESULTS Following treatment,95 cases were classified as the effective group(cured or improved),while 15 cases with improvement formed the ineffective group.Significant differences between both groups were noted in wound area,infection status,daily bed time,Hamilton Anxiety Rating Scale(HAMA)scores,Hamilton Depression Rating Scale(HAMD)scores,and levels of interleukin-6,tumor necrosis factor-alpha,and superoxide dismutase(P<0.05).Logistic regression analysis identified a wound area≥7 cm^(2),HAMA≥9 scores,and HAMD≥8 scores were independent risk factors for ineffective treatment in patients with chronic wounds(P<0.05).The receiver operating characteristic curve analysis revealed that the area under the curve for ineffective treatment based on wound area,HAMA,and HAMD was 0.767,0.805,and 0.768 respectively.CONCLUSION Wound size,anxiety,and depression are significant factors influencing the therapeutic outcomes in patients with chronic wounds that require careful attention,alongside the development of appropriate strategies.
基金Supported by Natural Science Foundation of Hainan Province,China,No.822MS174.
文摘BACKGROUND Non-Hodgkin's lymphoma(NHL)is a malignant tumor that originates from the lymphoid tissues and can potentially affect numerous organs within the body.Among these,the skin stands out as one of the primary sites affected by NHL,often presenting with multiple extra-nodal manifestations.In this report,we present an unusual case of NHL involving chronic wounds in the lower extremities that were difficult to heal.The scars were successfully treated using radiotherapy in combination with extended excision debridement and peroneal artery perforator flap grafting,resulting in satisfactory outcomes.CASE SUMMARY A 19-year-old male patient presented with ulceration of the skin on the left calf near the ankle accompanied by purulent discharge.Subsequent pathologic biopsy confirmed a diagnosis of NHL(extranodal NK/T-cell lymphoma,nasal type).Initial treatment comprised local radiotherapy and wound care;however,the wound exhibited prolonged non-healing.Consequently,the patient underwent a series of interventions including radiotherapy,wound enlargement excision debridement,and peroneal artery perforator flap grafting.Ultimately,successful healing was achieved with favorable postoperative outcomes characterized by good texture of the flap without any signs of rupture or infection.CONCLUSION The combination of radiotherapy,wound enlargement excision debridement,and peroneal artery perforator flap grafting may present a favorable treatment modality for chronic non-healing lower leg wounds resulting from NHL.
文摘Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes.
文摘A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site.
文摘The research status of continuous nursing of patients with chronic wounds is reviewed.Since the research on continuous nursing of chronic wound patients in China is still in the initial stage,if necessary,learn from foreign experience,improve relevant systems,develop corresponding evaluation tools,actively implement telemedicine,and carry out hospital-community linkage models,etc.to provide high-quality nursing services for patients with chronic wounds.
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
基金Supported by Aklilu Lemma Institute of Pathobiology.Addis Ababa University
文摘Objective:To evaluate the activity of selected Ethiopian medicinal plants traditionally used for wound treatment against wound-causing bacteria.Methods:Samples of medicinal plants(Achyranthes aspera,Brucea antidysenteriea,Datura stramonium,Croton macrostachyus,Acokanthera xchimperi.,Phytolacca dodecandra,Milhttia ferruginea,and Solanum incanum)were extracted using absolute methanol and water and tested for their antimicrobial activities against clinical isolates and standard strains of wound-causing bacteria using agar well diffusion and micro titer plate methods.Results:Most of the plant extracts had antibacterial activities,among which Acokanthera schimperi and Brucea antidysenteriea inhibited growth of 100%and 35%of the test organisms,respectively.Methanolic extracts had higher activities compared with their corresponding aqueous extracts.The most susceptible organism to the extracts was Streptococcus pyogens while the most resistant were Escherichia coli and Proteus vulgaris.Conclusions:This finding justifies the use of the plants in wound healing and their potential activity against woundcausing bacteria.Their toxicity level and antimicrobial activity with different extraction solvents should further be studied to use them as sources and templates for the synthesis of drugs to control wound and other disease-causing bacteria.
基金Supported by Shenzhen Longhua District Science and Innovation Bureau for Key Laboratory Construction,No.20160919A0410022Shenzhen Longhua District Science and Innovation Bureau Fund for Medical Institutions,No.2020038 and No.2017136。
文摘BACKGROUND Management of chronic refractory wounds is one of the toughest clinical challenges for surgeons.Because of poor blood supply,less tissue coverage,and easy exposure,the lower leg is a common site for chronic refractory wounds.The current therapeutic regimens often lead to prolonged hospital stay and higher healthcare costs.Concentrated growth factor(CGF)is a novel blood extract that contains various growth factors,platelets,and fibrins to promote wound healing process.However,there has been little research reported on the treatment of lower extremity wounds with CGF.CASE SUMMARY A 37-year-old man,without any past medical history,presented an ulcerated chronic wound on his right lower leg.The skin defect exhibited clear boundaries,with a size of 2.0 cm×3.5 cm.The depth of wound was up to the layer of deep fascia.Staphylococcus aureus was detected by bacterial culture.The final diagnosis was right lower extremity ulcers with infection.Cefathiamidine,silver sulfadiazine,and mupirocin cream were applied to control the infection.CGF gel was prepared from the patient’s blood sample,and was used to cover the wound after thorough debridement.The skin wound was successfully healed after three times of CGF treatment.CONCLUSION CGF displays an excellent wound healing promoting effect in patients with lowerextremity chronic refractory wounds.
文摘BACKGROUND Impaired wound healing can be associated with different pathological states.Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide.Mesenchymal stem cells(MSCs)possess the ability to regenerate tissues by secreting factors involved in promoting cell migration,proliferation and differentiation,while suppressing immune reactions.Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics.AIM To enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats.METHODS Human umbilical cord MSCs(hU-MSCs)were isolated and characterized by surface markers,CD105,vimentin and CD90.For preconditioning,hU-MSCs were treated with isorhamnetin after selection of the optimized concentration(5μmol/L)by cytotoxicity analysis.The migration potential of these MSCs was analyzed by the in vitro scratch assay.The healing potential of normal,and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound.Normal,and preconditioned MSCs(IH+MSCs)were transplanted after 72 h of burn injury and observed for 2 wk.Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing.RESULTS The scratch assay analysis showed a significant reduction in the scratch area in the case of IH+MSCs compared to the normal untreated MSCs at 24 h,while complete closure of the scratch area was observed at 48 h.Histological analysis showed reduced inflammation,completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH+MSCs.Gene expression analysis was time dependent and more pronounced in the case of IH+MSCs.Interleukin(IL)-1β,IL-6 and Bcl-2 associated X genes showed significant downregulation,while transforming growth factorβ,vascular endothelial growth factor,Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound,showing increased angiogenesis and reduced inflammation and apoptosis.CONCLUSION Preconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation,and improving tissue architecture and wound healing.The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.
基金sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-14-2-0095
文摘Background: Ballistics gelatin is a common tissue surrogate used in bacterial contamination models for projectile wounds. Although these studies have demonstrated that bacteria are transferred from the surface of the gelatin to the wound track by a projectile, quantifiable results have been inconsistent and not repeatable in successive tests.Methods: In this study, five areas of a typical contamination model in which bacterial recovery or survival are affected were identified for optimization. The first was a contaminated "skin" surrogate, where the novel use of vacuum filtration of a bacterial culture and buffer onto filter paper was employed. The other possibly problematic areas of the bacterial distribution model included the determination of bacterial survival when the contamination model is dried, survival in solid and molten gelatin, and the effect of high-intensity lights used for recording high-speed video.Results: Vacuum filtration of bacteria and buffer resulted in a consistent bacterial distribution and recovery. The use of phosphate buffer M9(pH 7) aided in neutralizing the ballistics gelatin and improving bacterial survival in solid gelatin. Additionally, the use of high-intensity lights to record high-speed video and the use of a 42℃ water bath to melt the gelatin were found to be bactericidal for gram-positive and gram-negative bacteria.Conclusion: Multiple areas of a typical contamination model in which bacterial survival may be impeded were identified, and methods were proposed to improve survival in each area. These methods may be used to optimize the results of bacterial contamination models for medical applications, such as understanding the progression of infection in penetrating wounds and to identify possible sources of contamination for forensic purposes.
基金This research was funded by grants from The First Affiliated Hospital Project of Guangzhou University of Chinese Medicine(No.2017HL01)
文摘In this case study,we analyzed the wound-healing process of a patient with a chronic wound who underwent fire needle treatment,and we tracked the coverage of granulation tissue and decrease of slough and exudate.An 85-year-old man had repeated right shoulder and back pain,itching,and skin festering for more than 1.5 years.A fire needle was administered combined with moist dressing once every 5 days to promote wound healing.After six rounds of fire needle treatment,granulation tissue formed over the surface of the wound base,the depth of the wound had become shallow,and the wound area was reduced.No complications occurred during the intervention.Fire needle therapy combined with a moist wound-healing dressing can be an effective alternative approach in managing chronic wounds.