期刊文献+
共找到453篇文章
< 1 2 23 >
每页显示 20 50 100
Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks:Climatology,Interannual Variability,and Extremes 被引量:2
1
作者 Ya WANG Gang HUANG +6 位作者 Baoxiang PAN Pengfei LIN Niklas BOERS Weichen TAO Yutong CHEN BO LIU Haijie LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1299-1312,共14页
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth... Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes. 展开更多
关键词 generative adversarial networks model bias deep learning El Niño-Southern Oscillation marine heatwaves
下载PDF
GeoNER:Geological Named Entity Recognition with Enriched Domain Pre-Training Model and Adversarial Training
2
作者 MA Kai HU Xinxin +4 位作者 TIAN Miao TAN Yongjian ZHENG Shuai TAO Liufeng QIU Qinjun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1404-1417,共14页
As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate unders... As important geological data,a geological report contains rich expert and geological knowledge,but the challenge facing current research into geological knowledge extraction and mining is how to render accurate understanding of geological reports guided by domain knowledge.While generic named entity recognition models/tools can be utilized for the processing of geoscience reports/documents,their effectiveness is hampered by a dearth of domain-specific knowledge,which in turn leads to a pronounced decline in recognition accuracy.This study summarizes six types of typical geological entities,with reference to the ontological system of geological domains and builds a high quality corpus for the task of geological named entity recognition(GNER).In addition,Geo Wo BERT-adv BGP(Geological Word-base BERTadversarial training Bi-directional Long Short-Term Memory Global Pointer)is proposed to address the issues of ambiguity,diversity and nested entities for the geological entities.The model first uses the fine-tuned word granularitybased pre-training model Geo Wo BERT(Geological Word-base BERT)and combines the text features that are extracted using the Bi LSTM(Bi-directional Long Short-Term Memory),followed by an adversarial training algorithm to improve the robustness of the model and enhance its resistance to interference,the decoding finally being performed using a global association pointer algorithm.The experimental results show that the proposed model for the constructed dataset achieves high performance and is capable of mining the rich geological information. 展开更多
关键词 geological named entity recognition geological report adversarial training confrontation training global pointer pre-training model
下载PDF
Generative Adversarial Networks Based Digital Twin Channel Modeling for Intelligent Communication Networks 被引量:2
3
作者 Yuxin Zhang Ruisi He +5 位作者 Bo Ai Mi Yang Ruifeng Chen Chenlong Wang Zhengyu Zhang Zhangdui Zhong 《China Communications》 SCIE CSCD 2023年第8期32-43,共12页
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D... Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking. 展开更多
关键词 digital twin channel modeling generative adversarial networks intelligent communication networking
下载PDF
Defending Adversarial Examples by a Clipped Residual U-Net Model
4
作者 Kazim Ali Adnan N.Qureshi +2 位作者 Muhammad Shahid Bhatti Abid Sohail Mohammad Hijji 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2237-2256,共20页
Deep learning-based systems have succeeded in many computer vision tasks.However,it is found that the latest study indicates that these systems are in danger in the presence of adversarial attacks.These attacks can qu... Deep learning-based systems have succeeded in many computer vision tasks.However,it is found that the latest study indicates that these systems are in danger in the presence of adversarial attacks.These attacks can quickly spoil deep learning models,e.g.,different convolutional neural networks(CNNs),used in various computer vision tasks from image classification to object detection.The adversarial examples are carefully designed by injecting a slight perturbation into the clean images.The proposed CRU-Net defense model is inspired by state-of-the-art defense mechanisms such as MagNet defense,Generative Adversarial Net-work Defense,Deep Regret Analytic Generative Adversarial Networks Defense,Deep Denoising Sparse Autoencoder Defense,and Condtional Generattive Adversarial Network Defense.We have experimentally proved that our approach is better than previous defensive techniques.Our proposed CRU-Net model maps the adversarial image examples into clean images by eliminating the adversarial perturbation.The proposed defensive approach is based on residual and U-Net learning.Many experiments are done on the datasets MNIST and CIFAR10 to prove that our proposed CRU-Net defense model prevents adversarial example attacks in WhiteBox and BlackBox settings and improves the robustness of the deep learning algorithms especially in the computer visionfield.We have also reported similarity(SSIM and PSNR)between the original and restored clean image examples by the proposed CRU-Net defense model. 展开更多
关键词 Adversarial examples adversarial attacks defense method residual learning u-net cgan cru-et model
下载PDF
Adversarial attacks and defenses for digital communication signals identification
5
作者 Qiao Tian Sicheng Zhang +1 位作者 Shiwen Mao Yun Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第3期756-764,共9页
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become ... As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management systems.AI has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and industry.However,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial attacks.Adversarial examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong results.Therefore,the security of AI models for the digital communication signals identification is the premise of its efficient and credible applications.In this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial principle.Next we present more detailed adversarial indicators to evaluate attack and defense behavior.Finally,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research. 展开更多
关键词 Digital communication signals identification AI model Adversarial attacks Adversarial defenses Adversarial indicators
下载PDF
Quantifying Uncertainty in Dielectric Solids’ Mechanical Properties Using Isogeometric Analysis and Conditional Generative Adversarial Networks
6
作者 Shuai Li Xiaodong Zhao +1 位作者 Jinghu Zhou Xiyue Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2587-2611,共25页
Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of rob... Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of robust com-putational methods.This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis(CGAN-IGA)to assess the uncertainty of dielectric solids’mechanical characteristics.IGA is utilized for the precise computation of electric potentials in dielectric,piezoelectric,and flexoelectric materials,leveraging its advantage of integrating seamlessly with Computer-Aided Design(CAD)models to maintain exact geometrical fidelity.The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials,specifically adapting to targeted design requirements and constraints.Then,the CGAN-IGA is adopted to calculate the electric potential of optimum models with different parameters to accelerate uncertainty quantification processes.The accuracy and feasibility of this method are verified through numerical experiments presented herein. 展开更多
关键词 Dielectric solid isogeometric finite element method surrogate model generative adversarial
下载PDF
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
7
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Chained Dual-Generative Adversarial Network:A Generalized Defense Against Adversarial Attacks 被引量:1
8
作者 Amitoj Bir Singh Lalit Kumar Awasthi +3 位作者 Urvashi Mohammad Shorfuzzaman Abdulmajeed Alsufyani Mueen Uddin 《Computers, Materials & Continua》 SCIE EI 2023年第2期2541-2555,共15页
Neural networks play a significant role in the field of image classification.When an input image is modified by adversarial attacks,the changes are imperceptible to the human eye,but it still leads to misclassificatio... Neural networks play a significant role in the field of image classification.When an input image is modified by adversarial attacks,the changes are imperceptible to the human eye,but it still leads to misclassification of the images.Researchers have demonstrated these attacks to make production self-driving cars misclassify StopRoad signs as 45 Miles Per Hour(MPH)road signs and a turtle being misclassified as AK47.Three primary types of defense approaches exist which can safeguard against such attacks i.e.,Gradient Masking,Robust Optimization,and Adversarial Example Detection.Very few approaches use Generative Adversarial Networks(GAN)for Defense against Adversarial Attacks.In this paper,we create a new approach to defend against adversarial attacks,dubbed Chained Dual-Generative Adversarial Network(CD-GAN)that tackles the defense against adversarial attacks by minimizing the perturbations of the adversarial image using iterative oversampling and undersampling using GANs.CD-GAN is created using two GANs,i.e.,CDGAN’s Sub-ResolutionGANandCDGAN’s Super-ResolutionGAN.The first is CDGAN’s Sub-Resolution GAN which takes the original resolution input image and oversamples it to generate a lower resolution neutralized image.The second is CDGAN’s Super-Resolution GAN which takes the output of the CDGAN’s Sub-Resolution and undersamples,it to generate the higher resolution image which removes any remaining perturbations.Chained Dual GAN is formed by chaining these two GANs together.Both of these GANs are trained independently.CDGAN’s Sub-Resolution GAN is trained using higher resolution adversarial images as inputs and lower resolution neutralized images as output image examples.Hence,this GAN downscales the image while removing adversarial attack noise.CDGAN’s Super-Resolution GAN is trained using lower resolution adversarial images as inputs and higher resolution neutralized images as output images.Because of this,it acts as an Upscaling GAN while removing the adversarial attak noise.Furthermore,CD-GAN has a modular design such that it can be prefixed to any existing classifier without any retraining or extra effort,and 2542 CMC,2023,vol.74,no.2 can defend any classifier model against adversarial attack.In this way,it is a Generalized Defense against adversarial attacks,capable of defending any classifier model against any attacks.This enables the user to directly integrate CD-GANwith an existing production deployed classifier smoothly.CD-GAN iteratively removes the adversarial noise using a multi-step approach in a modular approach.It performs comparably to the state of the arts with mean accuracy of 33.67 while using minimal compute resources in training. 展开更多
关键词 Adversarial attacks GAN-based adversarial defense image classification models adversarial defense
下载PDF
Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction 被引量:1
9
作者 Subhajit Chatterjee Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2023年第3期5507-5525,共19页
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist... The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy. 展开更多
关键词 Machine learning generative adversarial networks electric vehicle time-series TGAN WGAN-GP blend model demand prediction regression
下载PDF
Enhancing the Adversarial Transferability with Channel Decomposition
10
作者 Bin Lin Fei Gao +7 位作者 Wenli Zeng Jixin Chen Cong Zhang Qinsheng Zhu Yong Zhou Desheng Zheng Qian Qiu Shan Yang 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3075-3085,共11页
The current adversarial attacks against deep learning models have achieved incredible success in the white-box scenario.However,they often exhibit weak transferability in the black-box scenario,especially when attacki... The current adversarial attacks against deep learning models have achieved incredible success in the white-box scenario.However,they often exhibit weak transferability in the black-box scenario,especially when attacking those with defense mechanisms.In this work,we propose a new transfer-based blackbox attack called the channel decomposition attack method(CDAM).It can attack multiple black-box models by enhancing the transferability of the adversarial examples.On the one hand,it tunes the gradient and stabilizes the update direction by decomposing the channels of the input example and calculating the aggregate gradient.On the other hand,it helps to escape from local optima by initializing the data point with random noise.Besides,it could combine with other transfer-based attacks flexibly.Extensive experiments on the standard ImageNet dataset show that our method could significantly improve the transferability of adversarial attacks.Compared with the state-of-the-art method,our approach improves the average success rate from 88.2%to 96.6%when attacking three adversarially trained black-box models,demonstrating the remaining shortcomings of existing deep learning models. 展开更多
关键词 Adversarial attack transferability black-box models deep learning
下载PDF
基于RoBERTa-Span-Attack的标签指针网络军事命名实体识别 被引量:1
11
作者 罗兵 张显峰 +1 位作者 段立 陈琳 《海军工程大学学报》 CAS 北大核心 2024年第1期76-82,93,共8页
军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事... 军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事命名实体识别;然后,采用了一种基于Span的标签指针网络,同时完成实体的起止位置和类别的识别任务;最后,在模型训练过程中加入对抗训练策略,通过添加一些扰动来生成对抗样本进行训练。在军事领域数据集上的实验结果表明:所提出的军事领域命名实体识别模型相较于BERT-CRF、BERT-Softmax和BERT-Span,在识别准确度上具有更优的效果。 展开更多
关键词 军事命名实体识别 预训练模型 跨度 标签指针网络 对抗训练
下载PDF
基于DEMATEL-AISM的铁路工程建设风险识别影响因素与优化策略研究 被引量:6
12
作者 郭峰 李媛媛 +1 位作者 彭晓菁 古江林 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第2期802-811,共10页
铁路工程建设大型化、复杂化和系统化的发展趋势下,潜在的风险因素日益繁多,铁路工程建设高质量和可持续发展之路充满挑战。风险识别作为风险管理的首要环节,是应对和控制铁路工程建设风险的关键,受到项目内外部多方面因素的影响,且现... 铁路工程建设大型化、复杂化和系统化的发展趋势下,潜在的风险因素日益繁多,铁路工程建设高质量和可持续发展之路充满挑战。风险识别作为风险管理的首要环节,是应对和控制铁路工程建设风险的关键,受到项目内外部多方面因素的影响,且现有实践中没有系统的指导,导致风险识别工作易存在疏漏。基于此,通过文献研究和因子分析,提取铁路工程建设风险识别的核心影响因素,运用决策与试验评价实验室和解释结构模型的方法,构建对抗多级递阶结构模型(DEMATEL-AISM),计算铁路工程建设风险识别各影响因素的重要程度及其耦合关系。研究结果表明:铁路工程建设风险识别的效果受到直接层、间接层和根源层3层因素共同作用,其中,危险源监测分析、人员风险意识、风险调查措施、风险应对能力、铁路建设目标、预期风险后果和风险识别技术是影响风险识别结果的关键因素,在铁路工程建设风险管理工作的开展中应重点关注和控制。基于模型结果,分析风险识别影响因素的层级结构及因果关系,并从风险内部控制、项目一体化风险管理体系构建和动态风险预警机制设立3个方面,提出了铁路工程建设风险识别的建议和策略。研究结果有助于提高大型铁路工程建设风险辨识结果的全面性和科学性,对构建铁路工程建设风险识别体系具有一定参考价值和借鉴意义。 展开更多
关键词 铁路工程建设 风险辨识 风险识别影响因素 对抗多级递阶结构模型(DEMATEL-AISM)
下载PDF
汽车故障知识图谱构建及应用研究 被引量:1
13
作者 李先旺 黄忠祥 +2 位作者 贺德强 刘赛虎 秦学敬 《科学技术与工程》 北大核心 2024年第4期1578-1587,共10页
知识图谱技术对汽车高效的故障诊断具有重要的意义,现有汽车故障知识图谱构建存在着实体识别模型效果不佳、无法解决嵌套实体等问题。针对上述问题,通过采用全词掩码的预训练语义模型、加入对抗训练和改进嵌套实体识别模型的方式提高实... 知识图谱技术对汽车高效的故障诊断具有重要的意义,现有汽车故障知识图谱构建存在着实体识别模型效果不佳、无法解决嵌套实体等问题。针对上述问题,通过采用全词掩码的预训练语义模型、加入对抗训练和改进嵌套实体识别模型的方式提高实体识别模型效果,提出了一种改进的嵌套实体识别模型。实验结果表明,所提模型F1值(F_(1))、精确率(P)和召回率(R)相比基线模型分别提高了3.56%、4.08%、3.05%,相比其他模型也有不同程度的提高,验证了所提模型对汽车维修领域实体识别具有显著效果。同时,基于构建的汽车故障知识图谱,实现了汽车故障知识智能问答原型系统,展示了知识图谱技术在汽车故障诊断与维护领域的应用前景。 展开更多
关键词 汽车维修 知识图谱 嵌套命名实体识别 预训练模型 对抗训练
下载PDF
基于数据驱动的快速路合流区加速车道长度的研究 被引量:1
14
作者 张航 马宝林 +1 位作者 储泽宇 吕能超 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期53-60,共8页
设计长度合理的加速车道能有效地缓解快速路合流区频繁出现的交通瓶颈问题,因此采用数据驱动方法对快速路合流区的加速车道长度进行研究。利用无人机设备测取了快速路合流区的交通数据,从交通流特性及车辆汇入行为这两个角度对实测数据... 设计长度合理的加速车道能有效地缓解快速路合流区频繁出现的交通瓶颈问题,因此采用数据驱动方法对快速路合流区的加速车道长度进行研究。利用无人机设备测取了快速路合流区的交通数据,从交通流特性及车辆汇入行为这两个角度对实测数据进行分析,得到了合流区车辆的驾驶行为;根据合流区交通流特点,对数据集进行聚类分析,使用生成对抗式网络训练不同合流区汇入行为车辆的跟驰换道模型,并与实测数据和SUMO仿真软件中内置模型进行对比分析;应用生成对抗式网络模型进行交通环境仿真,选取速度、交通密度、交通冲突率指标建立奖励评价函数,得出了加速车道长度设计的推荐值。研究结果表明:采用主线车辆提前减速和向内侧车道换道这两种手段,可实现协同换道避让匝道汇入的车辆;相比SUMO软件内置模型,生成对抗式网络模型更加贴近实际情况;仿真得出的单车道平行式加速车道长度分别在100、80、60 km/h情况下的推荐值为280、240、200 m。 展开更多
关键词 交通工程 合流区 加速车道 跟驰换道模型 生成对抗式网络 交通仿真
下载PDF
基于引导扩散模型的自然对抗补丁生成方法
15
作者 何琨 佘计思 +3 位作者 张子君 陈晶 汪欣欣 杜瑞颖 《电子学报》 EI CAS CSCD 北大核心 2024年第2期564-573,共10页
近年来,物理世界中的对抗补丁攻击因其对深度学习模型安全的影响而引起了广泛关注.现有的工作主要集中在生成在物理世界中攻击性能良好的对抗补丁,没有考虑到对抗补丁图案与自然图像的差别,因此生成的对抗补丁往往不自然且容易被观察者... 近年来,物理世界中的对抗补丁攻击因其对深度学习模型安全的影响而引起了广泛关注.现有的工作主要集中在生成在物理世界中攻击性能良好的对抗补丁,没有考虑到对抗补丁图案与自然图像的差别,因此生成的对抗补丁往往不自然且容易被观察者发现.为了解决这个问题,本文提出了一种基于引导的扩散模型的自然对抗补丁生成方法.具体而言,本文通过解析目标检测器的输出构建预测对抗补丁攻击成功率的预测器,利用该预测器的梯度作为条件引导预训练的扩散模型的逆扩散过程,从而生成自然度更高且保持高攻击成功率的对抗补丁.本文在数字世界和物理世界中进行了广泛的实验,评估了对抗补丁针对各种目标检测模型的攻击效果以及对抗补丁的自然度.实验结果表明,通过将所构建的攻击成功率预测器与扩散模型相结合,本文的方法能够生成比现有方案更自然的对抗补丁,同时保持攻击性能. 展开更多
关键词 目标检测 对抗补丁 扩散模型 对抗样本 对抗攻击 深度学习
下载PDF
基于Diffusion-Model的PM_(2.5)检测中数据样本扩充研究
16
作者 吴为 李瑞 李晓光 《芜湖职业技术学院学报》 2023年第4期44-49,88,共7页
在PM_(2.5)检测领域,生成对抗网络(GAN)是最为常见的数据集扩充方案,通常在GAN的训练中通过扩大生成器和鉴别器分布的支持度以防止鉴别器过拟合。然而,因难以找到合适的噪声分布,采用这种方法难以达到预期的数据集扩充目标。而结合Diffu... 在PM_(2.5)检测领域,生成对抗网络(GAN)是最为常见的数据集扩充方案,通常在GAN的训练中通过扩大生成器和鉴别器分布的支持度以防止鉴别器过拟合。然而,因难以找到合适的噪声分布,采用这种方法难以达到预期的数据集扩充目标。而结合Diffusion-Model框架构建的Diffusion-GAN数据生成模型可以缓解丢失问题来稳定训练梯度,并通过创建同一样本的不同噪声版本来增强数据,从而达到提高生成样本质量和生成器的多样性的目的。实验表明,Diffusion-GAN相较于基线算法,其训练性能和生成样本的保真度分别提高了15.1%和32.7%,能够满足PM_(2.5)空气质量检测数据扩充的需求。 展开更多
关键词 PM_(2.5) 数据扩充 生成对抗网络 DIFFUSION-model
下载PDF
基于UNet3+生成对抗网络的视频异常检测 被引量:1
17
作者 陈景霞 林文涛 +1 位作者 龙旻翔 张鹏伟 《计算机工程与设计》 北大核心 2024年第3期777-784,共8页
为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别... 为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别对连续输入的视频帧生成预测,引入多种损失函数和光流模型学习其外观与运动信息,通过计算AUC进行性能评估。U3P^(2)方法以6.3 M参数量在Ped2数据集的AUC提升约0.6%,而UP^(3)方法在Avenue数据集的AUC提升约0.8%,验证其能够有效应对不同场景下的异常检测任务。 展开更多
关键词 生成对抗网络 视频异常检测 U型卷积网络 全尺度跳跃连接 密集跳跃连接 光流模型 多尺度特征提取
下载PDF
隐空间采样与隐蔽特征提取的CR-GAN复杂无线信道建模
18
作者 姜斌 程子巍 +2 位作者 包建荣 吕鑫 赵宜楠 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1817-1823,共7页
为了更准确地建模随机无线信道,提出一种自适应增强条件生成对抗网络信道建模方法.其采用扩展的生成对抗网络(Generative Adversarial Network,GAN)开展训练,以近似估计无线信道响应,模拟真实无线环境信道.为了改善GAN训练稳定性和学习... 为了更准确地建模随机无线信道,提出一种自适应增强条件生成对抗网络信道建模方法.其采用扩展的生成对抗网络(Generative Adversarial Network,GAN)开展训练,以近似估计无线信道响应,模拟真实无线环境信道.为了改善GAN训练稳定性和学习能力,引入条件信息和梯度惩罚项,并提出一种增强条件生成对抗网络框架,用于提取信道隐蔽特征.此外,还提出隐空间采样策略,以增加随机变量与生成数据的互信息量,提高所提框架的信道建模性能.仿真表明:所提框架能很好地模拟复杂无线信道分布.在信噪比为10 dB时,与现有GAN训练方法相比,其归一化均方误差性能改善约24%. 展开更多
关键词 无线通信 深度学习 信道建模 生成对抗网络
下载PDF
基于条件变分推断与内省对抗学习的多样化图像描述生成
19
作者 刘兵 李穗 +1 位作者 刘明明 刘浩 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2219-2227,共9页
现有多样化图像描述生成方法受到隐空间表示能力和评价指标制约,很难同时兼顾描述生成的多样性和准确性.为此,本文提出了一种新的多样化图像描述生成模型,该模型由一个条件变分推断编码器和一个生成器组成.编码器利用全局注意力学习每... 现有多样化图像描述生成方法受到隐空间表示能力和评价指标制约,很难同时兼顾描述生成的多样性和准确性.为此,本文提出了一种新的多样化图像描述生成模型,该模型由一个条件变分推断编码器和一个生成器组成.编码器利用全局注意力学习每个单词的隐向量空间,以提升模型对描述多样化的建模能力.生成器根据给定图像和序列隐向量生成多样化的描述语句.同时,引入内省对抗学习的思想,条件变分推断编码器同时作为鉴别器来区分真实描述和生成的描述,赋予模型自我评价生成的描述语句的能力,克服预定义评价指标的局限性.在MSCOCO数据集上的实验表明,与传统方法相比,在随机生成100个描述语句时,多样性指标mBLEU(mutual overlap-BiLingual Evaluation Understudy)提升了1.9%,同时准确性指标CIDEr(Consensus-based Image Description Evaluation)显著提升了7.5%.与典型多模态大模型相比,所提出方法在较小参数量的条件下更适用于生成多样化的陈述性描述语句. 展开更多
关键词 图像描述 变分推断 对抗学习 隐嵌入 多模态学习 生成模型
下载PDF
基于生成对抗网络的图像自增强去雾算法
20
作者 刘万军 程裕茜 曲海成 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1093-1106,共14页
针对现有去雾模型使用合成有雾图像数据集训练后容易出现过拟合的问题,提出了一种融合生成对抗网络的图像自增强去雾算法。在结合两个生成对抗网络的同时估计图像的深度信息。第一个GAN利用清晰图像学习图像加雾过程,将其生成的有雾图... 针对现有去雾模型使用合成有雾图像数据集训练后容易出现过拟合的问题,提出了一种融合生成对抗网络的图像自增强去雾算法。在结合两个生成对抗网络的同时估计图像的深度信息。第一个GAN利用清晰图像学习图像加雾过程,将其生成的有雾图像作为第二个GAN的输入,指导第二个GAN如何正确去雾。为了减少图像处理前后的差异,利用一致性损失函数来优化两个网络。在图像加雾部分添加场景深度估计模块,并对散射因子进行随机采样,实现图像自增强功能,更加真实地模拟现实世界中不同浓度的雾气。该算法无需使用合成有雾图像数据集的成对信息,进一步避免过拟合问题。实验结果表明:所提算法能够取得较好的去雾效果,在主观视觉质量和客观评价指标上均有良好表现,优于同类算法。 展开更多
关键词 图像处理 机器视觉 生成对抗网络 光学模型 图像去雾
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部