期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Role of tannin pretreatment in flotation separation of magnesite and dolomite
1
作者 Xiufeng Gong Jin Yao +5 位作者 Jun Guo Bin Yang Haoran Sun Wanzhong Yin Yulian Wang Yafeng Fu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期452-461,共10页
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator... Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite. 展开更多
关键词 tannin pretreatment selective inhibition flotation separation MAGNESITE DOLOMITE
下载PDF
Characteristics and main controlling factors of intra-platform shoal thin-layer dolomite reservoirs:A case study of Middle Permian Qixia Formation in Gaoshiti-Moxi area of Sichuan Basin,SW China
2
作者 HE Jiang LIAN Zhihua +5 位作者 LUO Wenjun ZHOU Hui XU Huilin HE Puwei Yang Yi LAN Xuemei 《Petroleum Exploration and Development》 SCIE 2024年第1期69-80,共12页
Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control... Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin. 展开更多
关键词 Middle Permian Qixia Formation intra-platform shoal thin-layer dolomite paleogeomorphology diagenesis Gaoshiti-Moxi area Sichuan Basin
下载PDF
Hydrocarbon accumulation in deep ancient carbonate-evaporite assemblages
3
作者 SHI Shuyuan HU Suyun +10 位作者 LIU Wei WANG Tongshan ZHOU Gang XU Anna HUANG Qingyu XU Zhaohui HAO Bin WANG Kun JIANG Hua MA Kui BAI Zhuangzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期54-68,共15页
The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within t... The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within the three major basins(East Siberian,Oman,and Officer in Australia)overseas,the carbonate–evaporite assemblages in the target interval are divided into three types:intercalated carbonate and gypsum salt,interbedded carbonate and gypsum salt,and coexisted carbonate,gypsum salt and clastic rock.Moreover,the concept and definition of the carbonate-evaporite assemblage are clarified.The results indicate that the oil and gas in the carbonate-evaporite assemblage are originated from two types of source rocks:shale and argillaceous carbonate,and confirmed the capability of gypsum salt in the saline environment to drive the source rock hydrocarbon generation.The dolomite reservoirs are classified in two types:gypseous dolomite flat,and grain shoal&microbial mound.This study clarifies that the penecontemporaneous or epigenic leaching of atmospheric fresh water mainly controlled the large-scale development of reservoirs.Afterwards,burial dissolution transformed and reworked the reservoirs.The hydrocarbon accumulation in carbonate-evaporite assemblage can be categorized into eight sub-models under three models(sub-evaporite hydrocarbon accumulation,supra-evaporite hydrocarbon accumulation,and inter-evaporite hydrocarbon accumulation).As a result,the Cambrian strata in the Tazhong Uplift North Slope,Maigaiti Slope and Mazatag Front Uplift Zone of the Tarim Basin,the Cambrian strata in the eastern-southern area of the Sichuan Basin,and the inter-evaporite Ma-4 Member of Ordovician in the Ordos Basin,China,are defined as favorable targets for future exploration. 展开更多
关键词 carbonate-evaporite assemblage dolomite reservoir source rock hydrocarbon accumulation Sichuan Basin Tarim Basin Ordos Basin
下载PDF
Episodic hydrothermal alteration on Middle Permian carbonate reservoirs and its geological significance in southwestern Sichuan Basin,SW China
4
作者 FENG Mingyou SHANG Junxin +5 位作者 SHEN Anjiang WEN Long WANG Xingzhi XU Liang LIANG Feng LIU Xiaohong 《Petroleum Exploration and Development》 SCIE 2024年第1期81-96,共16页
To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The... To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential. 展开更多
关键词 Sichuan Basin PERMIAN Middle Permian Qixia Formation Middle Permian Maokou Formation hydrothermal fluid hydrothermal dissolution DOLOMITE
下载PDF
Use of Unconventional Aggregates in Hot Mix Asphalt Concrete
5
作者 Viktors Haritonovs 《Journal of Civil Engineering and Architecture》 2024年第1期30-37,共8页
The study investigates use of dolomite sand waste as filler or/and sand material plus BOF steel slag as fine and coarse aggregate for design of high performance asphalt concrete.Both environmental and economic factors... The study investigates use of dolomite sand waste as filler or/and sand material plus BOF steel slag as fine and coarse aggregate for design of high performance asphalt concrete.Both environmental and economic factors contribute to the growing need for the use of these materials in asphalt concrete pavements.This is particularly important for Latvia,where local crushed dolomite and sandstone does not fulfill the requirements for mineral aggregate in high and medium intensity asphalt pavements roads.Annually 100 to 200 thousand tons of steel slag aggregates are produced in Latvia.However,it has not been used extensively in asphalt pavement despite its high performance characteristics.Dolomite sand waste,which is byproduct of crushed dolomite production,is another widely available polydisperse by-product in Latvia.Its quantity has reached a million of tons and is rapidly increasing.This huge quantity of technological waste needs to be recycled with maximum efficiency.Various combinations of steel slag,dolomite sand waste and conventional aggregates were used to develop AC 11 asphalt concrete mixtures.The mix properties tests include resistance to permanent deformations(wheel tracking test,dynamic creep test)and fatigue resistance.Laboratory test results showed that asphalt concrete mixtures containing steel slag and local limestone in coarse portion and dolomite sand waste in sand and filler portions had high resistance to plastic deformations and good resistance to fatigue failure. 展开更多
关键词 Steel slag dolomite sand waste permanent deformation creep test FATIGUE
下载PDF
Oxygen Isotope Clue to Migration of Dolomitizing Fluid as Exampled by the Changxing Formation Dolomite at Panlongdong, Northeastern Sichuan 被引量:4
6
作者 Rui Zhao Yasheng Wu +2 位作者 Hongxia Jiang Qingsong Liu 《Journal of Earth Science》 SCIE CAS CSCD 2017年第2期333-346,共14页
The Upper Permian Changxing dolomite reservoirs serves as one of the most important gas and oil reservoirs in the NE Sichuan Basin. Determining the dolomitizing fluid's pathway is regarded as the key to solve the "d... The Upper Permian Changxing dolomite reservoirs serves as one of the most important gas and oil reservoirs in the NE Sichuan Basin. Determining the dolomitizing fluid's pathway is regarded as the key to solve the "dolomite problem" and further petroleum exploration. Outcrop samples from Upper Permian Changhsingian Panlongdong Section were studied using oxygen isotopic analysis, cathodoluminescence(CL) and major element analysis, in an attempt to determine the migration path way and properties of the dolomitizing fluid. Of the Changxing dolomite, the δ18O values ranged from-3.494‰ to-5.481‰, which decreased from the top layer to the bottom in the section; the MgO contents varied from 9.24% to 21.43%, CaO contents from 28.65% to 39.87%, the CaO/MgO ratio from 1.40 to 4.31 and the Mn O contents from 0.004% to 0.009 8%. The Mg O contents showed a downwardly decreasing trend in the section, while the Ca O/Mg O showed an opposite rule. All of the dolomites looked dull or dark when they were exposed to the electron beam of the cathodoluminescence device. None of the fine-to medium grained dolomite showed a banded structure. Given that dolomitizing fluid's salinity decreased during the dolomitization process in its pathway, we concluded that the dolomitizing fluid migrated downwardly in Changxing Formation after excluding the possibility of deep burial or meteoric-marine mixing-water influences. As the dolomitizing fluid's pathway has always been difficult to be determined in highly dolomitized Formation, this study showed an important application of oxygen isotope values in resolving this problem. 展开更多
关键词 Sichuan Basin Changxing Formation dolomitization oxygen isotope origin migrating direction
原文传递
Effect of depressants on flotation separation of magnesite from dolomite and calcite 被引量:2
7
作者 Wenqing Qin Junjie Hu +4 位作者 Hailing Zhu Fen Jiao Wenhao Jia Junwei Han Chen Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期83-91,共9页
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu... The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity. 展开更多
关键词 Sodium silicate MAGNESITE DOLOMITE CALCITE Flotation separation INHIBITION
下载PDF
Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector
8
作者 Haoyong Yu Yangge Zhu +2 位作者 Liang Lu Xiaoxing Hu Songqing Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期783-791,共9页
This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,s... This study aims to investigate the effect of a cationic-anionic mixed collector(dodecyltrimethyl ammonium bromide/sodium oleate(DTAB/NaOL)on the selective separation of apatite,dolomite,and potassium feldspar.Herein,several experimental methods,including flotation experiments,zeta-potential detection,microcalorimetry detection,XPS analysis and FTIR measurements,were used.The flotation tests showed that dolomite and potassium feldspar can be successfully removed from apatite simultaneously when the molar ratio of DTAB to NaOL was 2:1 with pH 4.5.Zeta-potential and microcalorimetry detection suggested that NaOL and DTAB were adsorbed on the surface of dolomite and potassium feldspar respectively,and part of NaOL and DTAB formed co-adsorption on the surface of potassium feldspar to enhance the floatability of potassium feldspar.The XPS and FTIR spectra analysis demonstrated that the cationic collector,DTAB,was first adsorbed on the surface of potassium feldspar through electrostatic attraction in the DTAB/NaOL mixture system.Subsequently,the anionic NaOL collector and cationic DTAB collector form an electron neutralisation complex,thereby resulting in co-adsorption on the surface of potassium feldspar.NaOL was chemically reacted and adsorbed on dolomite surface,but almost no collector was adsorbed on apatite surface.Finally,the adsorption models of different collectors on mineral surface were obtained. 展开更多
关键词 FLOTATION Mixed collectors APATITE Potassium feldspar DOLOMITE
下载PDF
Fractionation characteristics of magnesium isotope in the ancient weathering crust
9
作者 Jia-Qi Yang Jun-Tao Zhang +6 位作者 Zhi-Liang He Ni-Na Luo Xiao-Hui Jjin Tao Zhang Ning Gu Kang-Jun Huang jian Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1446-1457,共12页
Weathering has always been a concerned around the world,as the first and most important step in the global cycle of elements,which leads to the fractionation of isotopes on the scale of geological age.The Middle Ordov... Weathering has always been a concerned around the world,as the first and most important step in the global cycle of elements,which leads to the fractionation of isotopes on the scale of geological age.The Middle Ordovician Majiagou Formation in Daniudi area of the Ordos Basin had experienced weathering for>130 Myr.Through thin section observation,major and trace element analysis,carbon,oxygen,and magnesium isotopes composition analysis,the dolomitization modes and weathering of ancient dolo-mite in Daniudi area were analyzed in detail.The results showed that the Sabkha and brine-reflux dolomitization modes had developed,and the Mg isotopes in different layers of the karst crust were fractionated by various factors.The vertical vadose zone was affected by weathering,the Mg isotope of dolomite(δ^(26)Mgdol)showed a downward decreasing trend;the horizontal underflow zone was controlled by diagenesis and formation fluid,δ^(26)Mgdol showed a vertical invariance and negative;the main reason for Mg isotope fractionation in the deep slow-flow zone was the brine-reflux dolomitization mode during early burial period,which showed a vertical downward increase.Finally,the Mg isotope characteristic data of the ancient weathering crust were provided and the process of Mg isotope frac-tionationinthekarstcrust was explained. 展开更多
关键词 Magnesium isotope Dolomitization mode Weathering Ancient weathering crust Ordos Basin
下载PDF
Production of high-purity Mg metal from dolomite through novel molten salt electrolysis and vacuum distillation
10
作者 Hyeong-Jun Jeoung Tae-Hyuk Lee +2 位作者 Jin-Young Lee Kyung-Woo Yi Jungshin Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1308-1320,共13页
In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten s... In this study,a novel Mg production process for producing high-purity Mg metal from dolomite was developed.When the electrolysis of calcined dolomite was conducted using Cu cathode and C anode in MgF_(2)–LiF molten salt at 1083–1173 K by applying an average current of 1.42–1.46 A for 9.50–21.0 h,the current efficiency of 66.4–88.6%was obtained.The produced Mg alloys consisted of MgCu_(2)and Cu(Mg)or MgCu_(2)and CuMg_(2)phases,depending on the Mg concentration in the Mg alloy.When the electrolysis of calcined dolomite was conducted in MgF_(2)–LiF–CaF_(2)molten salt at 1083 K,the current efficiency was 40.9–71.4%,owing to undesired reactions such as electroreduction of Ca^(2+)or/and CO_(3)^(2−)ions.Meanwhile,the current efficiency increased from 40.9%to 63.2%by utilizing a Pt anode,because the occurrence of CO_(3)^(2−)ions in the molten salt was prevented.After vacuum distillation of the obtained Mg alloys at 1300 K for 10 h,Mg metal with a purity of 99.9996–99.9998%was produced.Therefore,the feasibility of this novel process for the production of high-purity Mg metal from dolomite was demonstrated. 展开更多
关键词 High-purity magnesium DOLOMITE Magnesium oxide Electrolytic process Copper metal cathode Vacuum distillation
下载PDF
Diagenetic evolution and effects on reservoir development of the Dengying and Longwangmiao formations,Central Sichuan Basin,Southwestern China
11
作者 Lei Jiang An-Ping Hu +7 位作者 Yong-Liang Ou Da-Wei Liu Yong-Jie Hu You-Jun Tang Peng Sun Yuan-Yuan Liu Zi-Chen Wang Chun-Fang Cai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3379-3393,共15页
The deeply buried Lower Cambrian Longwangmiao Formation and Upper Ediacaran Dengying Formation from the Sichuan Basin,China,have a total natural gas reserve up to 3×10^(12)m^(3).The complex diagenetic evolution a... The deeply buried Lower Cambrian Longwangmiao Formation and Upper Ediacaran Dengying Formation from the Sichuan Basin,China,have a total natural gas reserve up to 3×10^(12)m^(3).The complex diagenetic evolution and their impacts on the present-day reservoir quality have not been systematically elucidated,hampering the current exploration.Crucially,the integration and comparation diagenetic study on these two formations,which may be able to shed new lights on reservoir formation mechanism,are yet to be systemically evaluated.By compiling geochemistry data,including carbonate U-Pb ages and petrophysics data,coupled with new petrology,trace elements,and strontium isotope data,of various types of diagenetic carbonates,this study aims to decipher the potential links between diagenesis and reservoir development of both formations.Intriguingly,similar diagenetic sequence,which contains five distinctive dolomite phases,is established in both formations.The matrix dolomite(D1)and early dolomite cement(D2)were likely formed by reflux dolomitization,as inferred by their nearly syn-depositional U-Pb ages and elevatedδ^(18)O caused by seawater evaporation.The subsequent moderate burial dolomite cement(D3)was most plausibly the product of burial compaction as indicated by its lighterδ^(18)O and slightly younger U-Pb ages compared with D1 and D2.Whereas deep burial dolomite cements(D4 and D5)yield markedly depletedδ^(18)O,elevated ^(87)Sr/^(86)Sr,along with much younger U-Pb ages and higher precipitation temperatures,suggesting that they were likely linked to hydrothermal fluids.Despite the wide occurrence of meteoric and organic acids leaching and thermochemical sulfate reduction,they may have only played a subsidiary role on these reservoirs development.Instead,superior reservoir quality is tightly linked to tectonics as inferred by higher reservoir quality closely related to the well-developed fractures and faults filled with abundant hydrothermal minerals.Notably,good reservoirs in both formations are mainly attributed to high permeability caused by tectonics.Hence,this new contribution emphasizes the crucial role of tectonics on spatially explicit reservoir prediction of deep to ultra-deep(up to>8000 m)carbonates in the Sichuan Basin,as well as other sedimentary basin analogues in China. 展开更多
关键词 Carbonate reservoir DIAGENESIS DOLOMITIZATION Meteoric water Oil charge Hydrothermal fluids Tectonic-driven fractures Deep to ultra-deep exploration
下载PDF
Origin of dolomites in the Permian dolomitic reservoirs of Fengcheng Formation in Mahu Sag,Junggar Basin, NW China
12
作者 TANG Yong LYU Zhengxiang +7 位作者 HE Wenjun QING Yuanhua LI Xiang SONG Xiuzhang YANG Sen CAO Qinming QIAN Yongxin ZHAO Xinmei 《Petroleum Exploration and Development》 2023年第1期43-56,共14页
Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock r... Origin of authigenic dolomites in the dolomitic reservoir of the Permian Fengcheng Formation in the Mahu Sag of Junggar Basin is unclear.Occurrence and genetic evolution of the authigenic dolomites in dolomitic rock reservoir of the Fengcheng Formation in the Mahu Sag were analyzed by polarized and fluorescence thin sections,scanning electron microscope(SEM),electron microprobe(EMP),C,O and Sr isotopes analysis,and other techniques.(1)Dolomites were mainly precipitated in three stages:penecontemporaneous-shallow burial stage(early stage of the Middle Permian),middle burial stage(middle stage of the Middle Permian),and middle-deep burial stage,with the former two stages in dominance.(2)Dolomitization fluid was high-salinity brine originating from alkaline lake.In the penecontemporaneous-shallow burial stage,Mg^(2+)was mainly supplied by alkaline-lake fluid and devitrification of volcanic glass.In the middle burial stage,Mg^(2+)mainly came from the transformation of clay minerals,devitrification of volcanic glass and dissolution of aluminosilicates such as feldspar.(3)Regular changes of Mg,Mn,Fe,Sr,Si and other elements during the growth of dolomite were mainly related to the alkaline-lake fluid,and to different influences of devitrification and diagenetic alteration of volcanic materials during the burial.(4)In the penecontemporaneous stage,induced by alkaline-lake microorganisms,the micritic-microcrystalline dolomites were formed by primary precipitation,replacement of aragonite and high-Mg calcite,and other processes;in the shallow burial stage,the silt-sized dolomites were formed by continuous growth of micritic-microcrystalline dolomite and replacement of calcites,tuffs and other substances;in the middle burial stage,the dolomites,mainly silt-and fine-sized,were formed by replacement of volcanic materials.The research results are referential for investigating the formation mechanism and distribution patterns of tight dolomitic reservoirs in the Mahu Sag and other similar oil and gas bearing areas. 展开更多
关键词 dolomitic rock dolomite origin tight oil reservoir Permian Fengcheng Formation Mahu Sag Junggar Basin fluid source fluid evolution isotopic composition
下载PDF
Reservoir Characterization of Special Dolomite Rock of Fengcheng Formation in Junggar Basin, China
13
作者 Famu Huang Yun Liu +8 位作者 Chenhao Pan Duocai Wang Ping Zhang Yaping Fu Hong Zhang Haibo Su Jun Lu Zhi Zhong Bin Wei 《Journal of Geoscience and Environment Protection》 2023年第9期333-350,共18页
Dolomites and eruptive rocks are well-developed in the Permian Fengcheng Formation in Junggar Basin in China, in which oil and gas are accumulated extensively. Until now, high-yield industrial oil and gas flows have b... Dolomites and eruptive rocks are well-developed in the Permian Fengcheng Formation in Junggar Basin in China, in which oil and gas are accumulated extensively. Until now, high-yield industrial oil and gas flows have been obtained in the dolomitic tuff of the second unit of the Fengcheng Formation, which demonstrates the huge exploration potential of the thick layer of massive dolomitic tuff. The lithology of the second unit of the Fengcheng Formation in this area has gradually transformed from the dolomite, dolomitic tuff to siltstone from east to west. Moreover, the well testing shows that the reservoir is oil-saturated, and the production rate mainly depends on the reservoir’s physical properties and fracture development. In this study, different types of data including core data, well log and seismic data are used cooperatively to characterize the sedimentary, structure and fracture features of the Fengcheng Formation, and then characterize the promising target zone in the study area. The result indicates that hydrocarbons are most accumulated along the deep fault in the Wu-Xia fault zone, which will be the favorable zone for the next progressive exploration. 展开更多
关键词 Junggar Basin Fengcheng Formation Section II PARAGENESIS Dolomitic Tuff Fracture
下载PDF
Origin of dolomite in the Middle Ordovician peritidal platform carbonates in the northern Ordos Basin, western China 被引量:5
14
作者 Xiao-Liang Bai Shao-Nan Zhang +2 位作者 Qing-Yu Huang Xiao-Qi Ding Si-Yang Zhang 《Petroleum Science》 SCIE CAS CSCD 2016年第3期434-449,共16页
The carbonates in the Middle Ordovician Ma_5~5submember of the Majiagou Formation in the northern Ordos Basin are partially to completely dolomitized.Two types of replacive dolomite are distinguished:(1) type 1dol... The carbonates in the Middle Ordovician Ma_5~5submember of the Majiagou Formation in the northern Ordos Basin are partially to completely dolomitized.Two types of replacive dolomite are distinguished:(1) type 1dolomite,which is primarily characterized by microcrystalline(〈30 urn),euhedral to subhedral dolomite crystals,and is generally laminated and associated with gypsumbearing microcrystalline dolomite,and(2) type 2 dolomite,which is composed primarily of finely crystalline(30-100 urn),regular crystal plane,euhedral to subhedral dolomite.The type 2 dolomite crystals are truncated by stylolites,indicating that the type 2 dolomite most likely predated or developed simultaneously with the formation of the stylolites.Stratigraphic,petrographic,and geochemical data indicate that the type 1 dolomite formed from near-surface,low-temperature,and slightly evaporated seawater and that the dolomitizing fluids may have been driven by density differences and elevation-related hydraulic head.The absence of massive depositional evaporites in the dolomitized intervals indicates that dolomitization was driven by the reflux of slightly evaporated seawater.The δ~(18)O values(-7.5 to-6.1 ‰) of type1 dolomite are slightly lower than those of seawaterderived dolomite,suggesting that the dolomite may be related to the recrystallization of dolomite at higher temperatures during burial.The type 2 dolomite has lowerδ~(18)O values(-8.5 to-6.7 ‰) and Sr~(2+) concentration and slightly higher Na~+,Fe~(2+),and Mn~(2+) concentrations and~(87)Sr/~(86)Sr ratios(0.709188-0.709485) than type 1 dolomite,suggesting that the type 2 dolomite precipitated from modified seawater and dolomitic fluids in pore water and that it developed at slightly higher temperatures as a result of shallow burial. 展开更多
关键词 Carbonate platform Dolomitization Dolomite Middle Ordovician Ma_5~5 submember dolomitizing fluids
下载PDF
The giant Bayan Obo REE-Nb-Fe deposit,China:Controversy and ore genesis 被引量:32
15
作者 Hong-Rui Fan Kui-Feng Yang +2 位作者 Fang-Fang Hu Shang Liu Kai-Yi Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期335-344,共10页
Bayan Obo ore deposit is the largest rare-earth element(REE) resource,and the second largest niobium(Nb) resource in the world.Due to the complicated element/mineral compositions and involving several geological e... Bayan Obo ore deposit is the largest rare-earth element(REE) resource,and the second largest niobium(Nb) resource in the world.Due to the complicated element/mineral compositions and involving several geological events,the REE enrichment mechanism and genesis of this giant deposit still remains intense debated.The deposit is hosted in the massive dolomite,and nearly one hundred carbonatite dykes occur in the vicinity of the deposit.The carbonatite dykes can be divided into three types from early to late:dolomite,co-existing dolomite-calcite and calcite type,corresponding to different evolutionary stages of carbonatite magmatism based on the REE and trace element data.The latter always has higher REE content.The origin of the ore-hosting dolomite at Bayan Obo has been addressed in various models,ranging from a normal sedimentary carbonate rocks to volcano-sedimentary sequence,and a large carbonatitic intrusion.More geochemical evidences show that the coarse-grained dolomite represents a Mesoproterozoic carbonatite pluton and the fine-grained dolomite resulted from the extensive REE mineralization and modification of the coarse-grained variety.The ore bodies,distributed along an E-W striking belt,occur as large lenses and underwent more intense fluoritization and fenitization.The first episode mineralization is characterized by disseminated mineralization in the dolomite.The second or main-episode is banded and/or massive mineralization,cut by the third episode consisting of aegirinerich veins.Various dating methods gave different mineralization ages at Bayan Obo,resulting in long and hot debates.Compilation of available data suggests that the mineralization is rather variable with two peaks at~1400 and 440 Ma.The early mineralization peak closes in time to the intrusion of the carbonatite dykes.A significant thermal event at ca.440 Ma resulted in the formation of late-stage veins with coarse crystals of REE minerals.Fluids involving in the REE-Nb-Fe mineralization at Bayan Obo might be REE-F-C02-NaCI-H20 system.The presence of REE-carbonates as an abundant solid in the ores shows that the original ore-forming fluids are very rich in REE,and therefore,have the potential to produce economic REE ores at Bayan Obo.the Bayan Obo deposit is a product of mantle-derived carbonatitic magmatism at ca.1400 Ma,which was likely related to the breakup of Columbia.Some remobilization of REE occurred due to subduction of the Palaeo-Asian oceanic plate during the Silurian,forming weak vein-like mineralization. 展开更多
关键词 GEOCHEMISTRY GEOCHRONOLOGY CARBONATITE DOLOMITE Bayan Obo REE-Nb-Fe deposit
下载PDF
Types and Origin of Dolostones in Tarim Basin, Northwest China: Petrographic and Geochemical Evidence 被引量:12
16
作者 CHEN Yongquan ZHOU Xinyuan +1 位作者 JIANG Shaoyong ZHAO Kuidong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第2期467-485,共19页
In the Tarim Basin of northwestern China hydrocarbon deposits have been discovered in parts of the thick strata of Cambrian dolostones. Based on petrographic study, six types of dolostone have been distinguished: Typ... In the Tarim Basin of northwestern China hydrocarbon deposits have been discovered in parts of the thick strata of Cambrian dolostones. Based on petrographic study, six types of dolostone have been distinguished: Type-l, pink mud-bearing silty crystalline dolostone (PMSD); Type-2, gypsum- and salt-bearing fine crystalline dolostone (GSFD); Type-3, fine crystalline dolostone with dolomite crystals with cloudy core and clear rim (CCFD); Type-4, deep gray mud-bearing silty crystalline dolostone (GMSD); Type-5, euhedral coarse crystalline dolostone (ECD); and Type-6, xenotopic coarse crystalline dolostone (XCD). Applying petrographic and geochemical methods, the genesis of the dolostones is studied in this paper. Normally, Type-I dolostone shows U- and Mo- depleted characteristics, reflecting a more oxidized formation environment; High ~80 and the purple color are consistent with formation of Sabkha dolostones on a supratidal flat. Types 2, 3, 4 dolostones show strata formation, similar REE patterns and 87Sr/86Sr ratios with contemporaneous limestones, suggesting a penecontemporaneous origin from seawater. Types 5 and 6 dolostones commonly occur as interbedded rocks, indicating secondary genesis after diagenesis. Type-6 dolostone has the highest order degree (OD) values (average 0.86), the lowest oxygen isotope values and positive Eu anomalies, which are consistent with previously reported hydrothermal dolostones. Differently, Type-5 shows euhedral texture, higher δ80 value, similar REE characteristic and 87Sr/86Sr ratios in comparison with contemporaneous limestones, suggesting that this type might have been dolomitized by down- transferring evaporated seawater during shallow burial stage. Dolostone fluid sources, formation environments and crystallizing dynamics are summarized and possible genetic models for the six types are proposed. 展开更多
关键词 DOLOMITE ORIGIN geochemistry PETROLOGY CAMBRIAN
下载PDF
Behavior of REE Fractionation during Weathering of Dolomite Regolith Profile in Southwest China 被引量:15
17
作者 GONG Qingjie ZHANG Gaixia +2 位作者 ZHANG Jing JIANG Biao MA Nan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第6期1439-1447,共9页
REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The we... REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism. 展开更多
关键词 REE FRACTIONATION WEATHERING DOLOMITE
下载PDF
Production of pig iron from red mud waste fines using thermal plasma technology 被引量:17
18
作者 K. Jayasankar P.K. Ray +3 位作者 A.K. Chaubey A. Padhi B.K. Satapathy P.S. Mukherjee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第8期679-684,共6页
Red mud, an insoluble residue produced during alkali leaching of bauxite, is considered as a low-grade iron ore containing 30% to 50% iron. The present paper deals with the use of thermal plasma technology for produci... Red mud, an insoluble residue produced during alkali leaching of bauxite, is considered as a low-grade iron ore containing 30% to 50% iron. The present paper deals with the use of thermal plasma technology for producing pig iron from red mud waste fines. The smelting reduction of red mud was carried out in a 35 kW DC extended arc thermal plasma reactor. Red mud was properly mixed with fluxes and graphite (fixed carbon, 99%) as a reductant as per stoichiometric requirement. The effect of various process parameters like a reductant, fluxes and smelting time on iron recovery was studied and optimized. An optimum condition for the maximum recovery of iron was obtained. A new thermal plasma process applicable to direct iron making from red mud waste fines that would achieve significant utilization of red mud was proposed. 展开更多
关键词 pig iron waste utilization red mud SMELTING DOLOMITE LIMESTONE thermal plasma
下载PDF
Geochemical characteristics and genetic model of dolomite reservoirs in the eastern margin of the Pre-Caspian Basin 被引量:12
19
作者 Wang Shuqin Zhao Lun +2 位作者 Cheng Xubin Fan Zifei He Ling 《Petroleum Science》 SCIE CAS CSCD 2012年第2期161-169,共9页
The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from... The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform. 展开更多
关键词 ISOTOPE DOLOMITE CARBONIFEROUS genetic model eastern margin of Pre-Caspian Basin
下载PDF
The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang,northwest China 被引量:6
20
作者 Kong Gao Guanghai Shi +6 位作者 Meili Wang Gen Xie Jian Wang Xiaochong Zhang Ting Fang Weiyan Lei Yan Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第4期1597-1612,共16页
The Tashisayi nephrite deposit is located in South Altyn Tagh.in Qiemo County,Xinjiang Province,northwest China.It is a recent discovery in the vast,well-known Kunlun-Altyn nephrite belt distributed along the south of... The Tashisayi nephrite deposit is located in South Altyn Tagh.in Qiemo County,Xinjiang Province,northwest China.It is a recent discovery in the vast,well-known Kunlun-Altyn nephrite belt distributed along the south of the Tarim Basin,producing more than half of the nephrite from the whole belt in 2017.Field investigations revealed that it is a dolomitic marble-related(D-type)nephrite deposit,but little is known about its age of formation and relationships between the granites and marble.Here we report field investigations,petrography of the neph rite,as well as petrography,geochemistry,geochronology of the zoisite-quartz altered intrusive rock and adjacent granites.An A-type granite is identified with a SHRIMP U-Pb zircon age of 926±7 Ma,suggesting it was emplaced in an extensional tectonic environment at that time.The altered intrusive rock has a cluster of U-Pb zircon age of 433±10 Ma.with similar trace element features to the A-type granite,suggesting it was formed in an extensional regime at this later time.Nephrite formed because of the metasomatism of dolomite marble by hydrothermal fluids.It is inferred that Ca^2+was released from the dolomitic marble by metasomatism forming Ca-rich fluids,which caused alteration of both the intrusive rocks(6.00-8.22 wt.%CaO)and granite(1.76-3.68 wt.%CaO)near the nephrite ore bodies.It is also inferred that Fe^2+from the granite migrated towards the dolomite marble.The fluids gave rise to the formation of Ca-minerals.such as zoisite,in the nephrite and altered intrusive rock,and epidote in the granite.Based on the contact relationships.similarity in hydrothermal processes,and consumption of Ca^2+,the Tashisayi nephrite is considered to have formed at the same time as the alteration of the intrusive rocks,i.e.~433 Ma.The geochronological similarity(~926 Ma.433 Ma)of South Altyn and North Qaidam may suggest that tectonically they belong to one single complex in the past,which was offset by the Altyn Tagh fault(ATF).The similar formation ages of the nephrites from Altyn Tagh(433 Ma)and the previously studied areas of West Kunlun(378-441 Ma)and East Kunlun(416 Ma)indicate that these nephrites formed during the closure of Proto-Tethys and in the accompanving post-collisional.extensional environment. 展开更多
关键词 NEPHRITE DOLOMITE MARBLE A-TYPE granite Altyn Tagh fault ZIRCON U-Pb dating
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部