期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
D-Fi: Domain adversarial neural network based CSI fingerprint indoor localization
1
作者 Wei Liu Zhiqiang Dun 《Journal of Information and Intelligence》 2023年第2期104-114,共11页
Deep learning based channel state information(CSI)fingerprint indoor localization schemes need to collect massive labeled data samples for training,and the parameters of the deep neural network are used as the fingerp... Deep learning based channel state information(CSI)fingerprint indoor localization schemes need to collect massive labeled data samples for training,and the parameters of the deep neural network are used as the fingerprints.However,the indoor environment may change,and the previously constructed fingerprint may not be valid for the changed environment.In order to adapt to the changed environment,it requires to recollect massive amount of labeled data samples and perform the training again,which is labor-intensive and time-consuming.In order to overcome this drawback,in this paper,we propose one novel domain adversarial neural network(DANN)based CSI Fingerprint Indoor Localization(D-Fi)scheme,which only needs the unlabeled data samples from the changed environment to update the fingerprint to adapt to the changed environment.Specifically,the previous environment and changed environment are treated as the source domain and the target domain,respectively.The DANN consists of the classification path and the domain-adversarial path,which share the same feature extractor.In the offline phase,the labeled CSI samples are collected as source domain samples to train the neural network of the classification path,while in the online phase,for the changed environment,only the unlabeled CSI samples are collected as target domain samples to train the neural network of the domainadversarial path to update parameters of the feature extractor.In this case,the feature extractor extracts the common features from both the source domain samples corresponding to the previous environment and the target domain samples corresponding to the changed environment.Experiment results show that for the changed localization environment,the proposed D-Fi scheme significantly outperforms the existing convolutional neural network(CNN)based scheme. 展开更多
关键词 Indoor localization domain adversarial neural network CSI FINGERPRINT Deep learning
原文传递
An improved transfer learning strategy for short-term cross-building energy prediction usingdata incremental 被引量:2
2
作者 Guannan Li Yubei Wu +5 位作者 Chengchu Yan Xi Fang Tao Li Jiajia Gao Chengliang Xu Zixi Wang 《Building Simulation》 SCIE EI CSCD 2024年第1期165-183,共19页
The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildin... The available modelling data shortage issue makes it difficult to guarantee the performance of data-driven building energy prediction(BEP)models for both the newly built buildings and existing information-poor buildings.Both knowledge transfer learning(KTL)and data incremental learning(DIL)can address the data shortage issue of such buildings.For new building scenarios with continuous data accumulation,the performance of BEP models has not been fully investigated considering the data accumulation dynamics.DIL,which can learn dynamic features from accumulated data adapting to the developing trend of new building time-series data and extend BEP model's knowledge,has been rarely studied.Previous studies have shown that the performance of KTL models trained with fixed data can be further improved in scenarios with dynamically changing data.Hence,this study proposes an improved transfer learning cross-BEP strategy continuously updated using the coarse data incremental(CDI)manner.The hybrid KTL-DIL strategy(LSTM-DANN-CDI)uses domain adversarial neural network(DANN)for KLT and long short-term memory(LSTM)as the Baseline BEP model.Performance evaluation is conducted to systematically qualify the effectiveness and applicability of KTL and improved KTL-DIL.Real-world data from six-type 36 buildings of six types are adopted to evaluate the performance of KTL and KTL-DIL in data-driven BEP tasks considering factors like the model increment time interval,the available target and source building data volumes.Compared with LSTM,results indicate that KTL(LSTM-DANN)and the proposed KTL-DIL(LSTM-DANN-CDI)can significantly improve the BEP performance for new buildings with limited data.Compared with the pure KTL strategy LSTM-DANN,the improved KTL-DIL strategy LSTM-DANN-CDI has better prediction performance with an average performance improvement ratio of 60%. 展开更多
关键词 building energy prediction(BEP) cross-building data incremental learning(DIL) domain adversarial neural network(DANN) knowledge transfer learning(KTL)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部