In June 2018, the United States claimed the No. 1 position in supercomputing according to TOP500, which ranks the top 500 most powerful computer systems in the world [1]. The US Department of Energy’s Summit machine ...In June 2018, the United States claimed the No. 1 position in supercomputing according to TOP500, which ranks the top 500 most powerful computer systems in the world [1]. The US Department of Energy’s Summit machine (Fig. 1)[1] claimed this distinction, which previously had been held by China’s Sunway TaihuLight supercomputer.展开更多
We have demonstrated the application of the world’s fastest supercomputer Fugaku located in Japan to select the COVID-19 drugs and stopping the pandemic spread. Using computer simulation out of 2128 potential drug ca...We have demonstrated the application of the world’s fastest supercomputer Fugaku located in Japan to select the COVID-19 drugs and stopping the pandemic spread. Using computer simulation out of 2128 potential drug candidates, the world’s fastest supercomputer picked 30 most effective and potential drugs. Twelve of them are under clinical trials outside Japan;some are being tested in Japan. The computer reduced the computation time from one year to 10 days when compared to second superfast computer of the world. Fugaku supercomputer was employed to know the behavior of airborne aerosol COVID-19 virus. 3Cs were suggested: avoid closed and crowded spaces and contacts to stop the pandemic spread. The progress in vaccine development and proper use and type of mask has also been described in this article. The article will benefit greatly to stop spreading and treating the pandemic COVID-19.展开更多
The first in China 10~9 sparallel supercomputer, named as Yinhe-Ⅱ, had been manufac-tured by Science-technological University of National Defence. The main feature of thesupercomputer are: 4-processor system, the pri...The first in China 10~9 sparallel supercomputer, named as Yinhe-Ⅱ, had been manufac-tured by Science-technological University of National Defence. The main feature of thesupercomputer are: 4-processor system, the principle frequence 50 MHz, the word length 64 byte,the main memory 256 Mb, two individual input / output subsystems, > 10~9 operations per sec-展开更多
China’s first supercomputer capable of 100 million calculations per second was the YH-1,which was independently developed by the Institute of Computer Science at the National University of Defense Technology(NUDT)bet...China’s first supercomputer capable of 100 million calculations per second was the YH-1,which was independently developed by the Institute of Computer Science at the National University of Defense Technology(NUDT)between 1978 and 1983.YH-1 played an important role in China’s national defense construction and national economic development.It made China one of the few countries in the world to successfully develop a supercomputer.Based on original archive documents,interviews with relevant personnel,and an analysis of the technological parameters of the supercomputers YH-1 in China and Cray-1 in the United States,this paper reviews in detail the historic process of the development of YH-1,analyzing its innovation and summarizing the experience and lessons learned from it.This analysis is significant for current military-civilian integration,and the commercialization of university research findings in China.展开更多
In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homoge...In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.展开更多
文摘In June 2018, the United States claimed the No. 1 position in supercomputing according to TOP500, which ranks the top 500 most powerful computer systems in the world [1]. The US Department of Energy’s Summit machine (Fig. 1)[1] claimed this distinction, which previously had been held by China’s Sunway TaihuLight supercomputer.
文摘We have demonstrated the application of the world’s fastest supercomputer Fugaku located in Japan to select the COVID-19 drugs and stopping the pandemic spread. Using computer simulation out of 2128 potential drug candidates, the world’s fastest supercomputer picked 30 most effective and potential drugs. Twelve of them are under clinical trials outside Japan;some are being tested in Japan. The computer reduced the computation time from one year to 10 days when compared to second superfast computer of the world. Fugaku supercomputer was employed to know the behavior of airborne aerosol COVID-19 virus. 3Cs were suggested: avoid closed and crowded spaces and contacts to stop the pandemic spread. The progress in vaccine development and proper use and type of mask has also been described in this article. The article will benefit greatly to stop spreading and treating the pandemic COVID-19.
文摘The first in China 10~9 sparallel supercomputer, named as Yinhe-Ⅱ, had been manufac-tured by Science-technological University of National Defence. The main feature of thesupercomputer are: 4-processor system, the principle frequence 50 MHz, the word length 64 byte,the main memory 256 Mb, two individual input / output subsystems, > 10~9 operations per sec-
文摘China’s first supercomputer capable of 100 million calculations per second was the YH-1,which was independently developed by the Institute of Computer Science at the National University of Defense Technology(NUDT)between 1978 and 1983.YH-1 played an important role in China’s national defense construction and national economic development.It made China one of the few countries in the world to successfully develop a supercomputer.Based on original archive documents,interviews with relevant personnel,and an analysis of the technological parameters of the supercomputers YH-1 in China and Cray-1 in the United States,this paper reviews in detail the historic process of the development of YH-1,analyzing its innovation and summarizing the experience and lessons learned from it.This analysis is significant for current military-civilian integration,and the commercialization of university research findings in China.
基金This work is supported by the National Key Research and Development Plan program of the Ministry of Science and Technology of China(No.2016YFB0201100)Additionally,this work is supported by the National Laboratory for Marine Science and Technology(Qingdao)Major Project of the Aoshan Science and Technology Innovation Program(No.2018ASKJ01-04)the Open Fundation of Key Laboratory of Marine Science and Numerical Simulation,Ministry of Natural Resources(No.2021-YB-02).
文摘In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.