We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of...We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph.展开更多
A path <i>π</i> = [<i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, …, <i>v</i><sub><em>k</em></sub>] in a graph <i>G&...A path <i>π</i> = [<i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, …, <i>v</i><sub><em>k</em></sub>] in a graph <i>G</i> = (<i>V</i>, <i>E</i>) is an uphill path if <i>deg</i>(<i>v</i><sub><i>i</i></sub>) ≤ <i>deg</i>(<i>v</i><sub><i>i</i>+1</sub>) for every 1 ≤ <i>i</i> ≤ <i>k</i>. A subset <i>S </i><span style="white-space:nowrap;"><span style="white-space:nowrap;">⊆</span></span> <i>V</i>(<i>G</i>) is an uphill dominating set if every vertex <i>v</i><sub><i>i</i></sub> <span style="white-space:nowrap;"><span style="white-space:nowrap;">∈</span> </span><i>V</i>(<i>G</i>) lies on an uphill path originating from some vertex in <i>S</i>. The uphill domination number of <i>G</i> is denoted by <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>γ</i></span></i></span></i><sub><i>up</i></sub>(<i>G</i>) and is the minimum cardinality of the uphill dominating set of <i>G</i>. In this paper, we introduce the uphill domination polynomial of a graph <i>G</i>. The uphill domination polynomial of a graph <i>G</i> of <i>n</i> vertices is the polynomial <img src="Edit_75fb5c37-6ef5-4292-9d3a-4b63343c48ce.bmp" alt="" />, where <em>up</em>(<i>G</i>, <i>i</i>) is the number of uphill dominating sets of size <i>i</i> in <i>G</i>, and <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>γ</i></span></i></span></i><i><sub>up</sub></i>(<i>G</i>) is the uphill domination number of <i>G</i>, we compute the uphill domination polynomial and its roots for some families of standard graphs. Also, <i>UP</i>(<i>G</i>, <em>x</em>) for some graph operations is obtained.展开更多
文摘We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph.
文摘A path <i>π</i> = [<i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, …, <i>v</i><sub><em>k</em></sub>] in a graph <i>G</i> = (<i>V</i>, <i>E</i>) is an uphill path if <i>deg</i>(<i>v</i><sub><i>i</i></sub>) ≤ <i>deg</i>(<i>v</i><sub><i>i</i>+1</sub>) for every 1 ≤ <i>i</i> ≤ <i>k</i>. A subset <i>S </i><span style="white-space:nowrap;"><span style="white-space:nowrap;">⊆</span></span> <i>V</i>(<i>G</i>) is an uphill dominating set if every vertex <i>v</i><sub><i>i</i></sub> <span style="white-space:nowrap;"><span style="white-space:nowrap;">∈</span> </span><i>V</i>(<i>G</i>) lies on an uphill path originating from some vertex in <i>S</i>. The uphill domination number of <i>G</i> is denoted by <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>γ</i></span></i></span></i><sub><i>up</i></sub>(<i>G</i>) and is the minimum cardinality of the uphill dominating set of <i>G</i>. In this paper, we introduce the uphill domination polynomial of a graph <i>G</i>. The uphill domination polynomial of a graph <i>G</i> of <i>n</i> vertices is the polynomial <img src="Edit_75fb5c37-6ef5-4292-9d3a-4b63343c48ce.bmp" alt="" />, where <em>up</em>(<i>G</i>, <i>i</i>) is the number of uphill dominating sets of size <i>i</i> in <i>G</i>, and <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>γ</i></span></i></span></i><i><sub>up</sub></i>(<i>G</i>) is the uphill domination number of <i>G</i>, we compute the uphill domination polynomial and its roots for some families of standard graphs. Also, <i>UP</i>(<i>G</i>, <em>x</em>) for some graph operations is obtained.