期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On Total Domination Polynomials of Certain Graphs
1
作者 S. Sanal H. E. Vatsalya 《Journal of Mathematics and System Science》 2016年第3期123-127,共5页
We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of... We have introduced the total domination polynomial for any simple non isolated graph G in [7] and is defined by Dt(G, x) = ∑in=yt(G) dr(G, i) x', where dr(G, i) is the cardinality of total dominating sets of G of size i, and yt(G) is the total domination number of G. In [7] We have obtained some properties of Dt(G, x) and its coefficients. Also, we have calculated the total domination polynomials of complete graph, complete bipartite graph, join of two graphs and a graph consisting of disjoint components. In this paper, we presented for any two isomorphic graphs the total domination polynomials are same, but the converse is not true. Also, we proved that for any n vertex transitive graph of order n and for any v ∈ V(G), dt(G, i) = 7 dt(V)(G, i), 1 〈 i 〈 n. And, for any k-regular graph of order n, dr(G, i) = (7), i 〉 n-k and d,(G, n-k) = (kn) - n. We have calculated the total domination polynomial of Petersen graph D,(P, x) = 10X4 + 72x5 + 140x6 + 110x7 + 45x8 + [ 0x9 + x10. Also, for any two vertices u and v of a k-regular graph Hwith N(u) ≠ N(v) and if Dr(G, x) = Dt( H, x ), then G is also a k-regular graph. 展开更多
关键词 total dominating set total domination number total domination polynomial
下载PDF
On the Uphill Domination Polynomial of Graphs
2
作者 Thekra Alsalomy Anwar Saleh +1 位作者 Najat Muthana Wafa Al Shammakh 《Journal of Applied Mathematics and Physics》 2020年第6期1168-1179,共12页
A path <i>π</i> = [<i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, …, <i>v</i><sub><em>k</em></sub>] in a graph <i>G&... A path <i>π</i> = [<i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, …, <i>v</i><sub><em>k</em></sub>] in a graph <i>G</i> = (<i>V</i>, <i>E</i>) is an uphill path if <i>deg</i>(<i>v</i><sub><i>i</i></sub>) ≤ <i>deg</i>(<i>v</i><sub><i>i</i>+1</sub>) for every 1 ≤ <i>i</i> ≤ <i>k</i>. A subset <i>S </i><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8838;</span></span> <i>V</i>(<i>G</i>) is an uphill dominating set if every vertex <i>v</i><sub><i>i</i></sub> <span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8712;</span> </span><i>V</i>(<i>G</i>) lies on an uphill path originating from some vertex in <i>S</i>. The uphill domination number of <i>G</i> is denoted by <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>&#947;</i></span></i></span></i><sub><i>up</i></sub>(<i>G</i>) and is the minimum cardinality of the uphill dominating set of <i>G</i>. In this paper, we introduce the uphill domination polynomial of a graph <i>G</i>. The uphill domination polynomial of a graph <i>G</i> of <i>n</i> vertices is the polynomial <img src="Edit_75fb5c37-6ef5-4292-9d3a-4b63343c48ce.bmp" alt="" />, where <em>up</em>(<i>G</i>, <i>i</i>) is the number of uphill dominating sets of size <i>i</i> in <i>G</i>, and <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>&#947;</i></span></i></span></i><i><sub>up</sub></i>(<i>G</i>) is the uphill domination number of <i>G</i>, we compute the uphill domination polynomial and its roots for some families of standard graphs. Also, <i>UP</i>(<i>G</i>, <em>x</em>) for some graph operations is obtained. 展开更多
关键词 domination Uphill domination Uphill domination Polynomial
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部