The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
To shed light on the genesis of the Dongping deposit and reveal the behaviour of CO_(2),Au and other ore elements(e.g.,Cu,Fe,Zn,As,Sb,Co etc.)in ore-forming fluids,petrographic,microthermometric and synchrotron radiat...To shed light on the genesis of the Dongping deposit and reveal the behaviour of CO_(2),Au and other ore elements(e.g.,Cu,Fe,Zn,As,Sb,Co etc.)in ore-forming fluids,petrographic,microthermometric and synchrotron radiation X-ray fluorescence(SRXRF)analyses of fluid inclusions were conducted.The ore-forming fluid is characterized as an H_(2)O-CO_(2)-NaCl system with medium-high temperatures and low salinity.Four mineralization stages are identified,namely,feldsparquartz(stage 1);pyrite-white quartz(stage 2);sulfide-smoky grey quartz(stage 3);and carbonate-quartz(stage 4).Three types of inclusions were distinguished,based on fluid composition,phase assemblages and mode of homogenization.Type A:H_(2)O-rich fluid inclusions show 2 phases(liquid H_(2)O(LH_(2)O)+vapour H_(2)O(VH_(2)O))at room temperature and homogenize to the liquid phase.Type B:H_(2)O-CO_(2)fluid inclusions contain 2–3 phases(liquid H_(2)O(LH_(2)O)+vapour CO_(2)(VCO_(2));liquid H_(2)O(LH_(2)O)+liquid CO_(2)(LCO_(2)));liquid H_(2)O(LH_(2)O)+liquid CO_(2)(LCO_(2))+vapour CO_(2)(VCO_(2)))at room temperature and homogenized to the liquid H_(2)O phase.Type C:H_(2)O-CO_(2)fluid inclusions show 2 phases(liquid H_(2)O(LH_(2)O)+liquid CO_(2)(LCO_(2))at room temperature and homogenize to a critical state.CO_(2)is clearly more enriched in the fluid inclusions of stages 2 and 3 than in stage 1.Stage 1 is dominated by type A(H_(2)O-rich)inclusions with homogenization temperatures(Th)of 220–359℃and salinities of 1.1–3.1 wt%NaCl equivalent.Type B(CO_(2)-rich)inclusions gradually increase in stages 2 and 3.The Th range of type B inclusions in stage 2 is 241–397℃with salinities of 2.2–6.9 wt%NaCl equivalent;the Th range of type A inclusions is 217–373℃with salinities of 1.2–8.1 wt%NaCl equivalent.The Th range of type B inclusions in stage 3 is 215–361℃with salinities of 2.9–6.1 wt%NaCl equivalent;the range of type A inclusions is 158–351℃with a salinity of 0.7–5.5 wt%NaCl equivalent.Stage 4 is characterized by type A with Th of 151–250℃and salinities of 0.9–8.3 wt%NaCl equivalent.The mapping results show that elements As,Te and Sb are more concentrated in vapour CO_(2)than in liquid H_(2)O at room temperature,which suggests that vapour components are more able to transport elements when phase separation occurs.The SRXRF quantitative results show that Au,Cl,S and some other metals are obviously more enriched in the fluid inclusions of stages 2 and 3 than those in stage 1.Additionally,the contents of S in stages 1–3 are much lower than those of Cl,which suggests that gold might migrate mainly in the form of a gold-chloride complex.Au is more enriched in type B fluid inclusions than in type A fluid inclusions,which suggests that the enrichment and migration of gold are closely related to CO_(2)and CO_(2)plays a critical role in the migration and enrichment of gold.The trace elements in the fluid have a similar change trend to those in the Yanshanian syenogranite distributed in the southeastern part of the mining area,which may provide some evidence for an intrusion-related genesis for the Dongping gold deposit.展开更多
The Dongping gold deposit, situated on the northern margin of the North China Platform, is a composite deposit composed of auriferous quartz vein-type and altered rock-type ore bodies. It is hosted in the inner contac...The Dongping gold deposit, situated on the northern margin of the North China Platform, is a composite deposit composed of auriferous quartz vein-type and altered rock-type ore bodies. It is hosted in the inner contact zone of an alkaline intrusion which was intruded into Archean metamorphic rocks and was formed not later than the Hercynian peried. Auriferous quartz veins of the deposit are dated with the fluid inclusion Rb-Sr isochron method at 103 ±4Ma, indicating that the gold deposit was formed in the Yenshanian period. 87Sr/86Sr sourcetracing shows the ore-forming materials came dominantly from alkaline intrusions. These results, combined with other isotope and REE data, suggest that the Dengping gold deposit is not a traditional magmatic hydrothermal deposit, but a reworked hydrothermal deposit related to heated and evoved meteoric water.展开更多
Located at the boundary of Chongli county, Chicheng county and Xuanhua county of Heibei province, the Dongping gold deposit is genetically affiliated to the late Jurassic- early Cretaceous volcanics and intrusives. Th...Located at the boundary of Chongli county, Chicheng county and Xuanhua county of Heibei province, the Dongping gold deposit is genetically affiliated to the late Jurassic- early Cretaceous volcanics and intrusives. The ore body is quartz vein- and alteration-type and pyrite and quartz are the dominant gold-bearing minerals.展开更多
大高庄铁矿属"鞍山式"沉积变质型铁矿床,矿体隐伏于地下40~48 m,赋存于泰山岩群山草峪组地层中,岩性为磁铁角闪石英岩,矿床由3个矿带9个矿体组成,其中Ⅰ-1为主矿体,矿床平均品位TFe 30.09%,m Fe 22.51%。矿石工业类型为需选弱磁性贫...大高庄铁矿属"鞍山式"沉积变质型铁矿床,矿体隐伏于地下40~48 m,赋存于泰山岩群山草峪组地层中,岩性为磁铁角闪石英岩,矿床由3个矿带9个矿体组成,其中Ⅰ-1为主矿体,矿床平均品位TFe 30.09%,m Fe 22.51%。矿石工业类型为需选弱磁性贫铁矿石。通过对大高庄铁矿地质特征及矿床成因进行分析研究,对今后寻找同类型铁矿以及选择有效合理的勘探方法和手段具有重要意义。展开更多
东坪式金矿床产于华北地台北缘金矿成矿带的冀西北金矿集中区,构造上位于华北克拉通北缘深大断裂-尚义-赤城断裂的南侧。金矿床产于泥盆纪早期(386~410Ma)水泉沟正长岩杂岩体内及接触带附近,矿体分布受脆-韧性剪切断裂构造的制约。金...东坪式金矿床产于华北地台北缘金矿成矿带的冀西北金矿集中区,构造上位于华北克拉通北缘深大断裂-尚义-赤城断裂的南侧。金矿床产于泥盆纪早期(386~410Ma)水泉沟正长岩杂岩体内及接触带附近,矿体分布受脆-韧性剪切断裂构造的制约。金矿成矿作用具有多期次的特点,成矿时代为燕山期(156~203Ma)。矿石类型主要为石英脉型、石英网脉+脉旁钾硅化蚀变岩型和钾硅化蚀变岩型,具有典型的碱性岩金矿的金-碲组合,(含)金矿物主要为自然金、碲金矿和碲金银矿。流体包裹体的 H、O 及 He 同位素研究表明,成矿流体为以大气降水主的混合热液流体并可能存在深源流体的参与。矿床的 S、Pb、Sr 和 Si 同位素组成表明,金矿成矿物质主要来源于正长岩杂岩体,部分源于太古宙桑干群变质岩和燕山期花岗岩。因此,东坪式金矿是由燕山期伸展构造环境下热液流体在上涌地幔及岩浆活动的热驱动下对泥盆纪早期形成的正长岩交代改造的产物。展开更多
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
基金funded by a Natural Science Foundation of Hebei Province(Grant No.D2020403019)the Natural Science Foundation of Hebei Province(Grant Nos.D2020403101 and D2019403041)+2 种基金the Science and Technology Project of Hebei Education Department(Grant No.ZD2020134)the National Natural Science Foundation of China(Grant Nos.41702094 and 41672070)the Science and Technology Innovation Team Project of Hebei GEO University(Grant No.KJCXTD-2021-02)。
文摘To shed light on the genesis of the Dongping deposit and reveal the behaviour of CO_(2),Au and other ore elements(e.g.,Cu,Fe,Zn,As,Sb,Co etc.)in ore-forming fluids,petrographic,microthermometric and synchrotron radiation X-ray fluorescence(SRXRF)analyses of fluid inclusions were conducted.The ore-forming fluid is characterized as an H_(2)O-CO_(2)-NaCl system with medium-high temperatures and low salinity.Four mineralization stages are identified,namely,feldsparquartz(stage 1);pyrite-white quartz(stage 2);sulfide-smoky grey quartz(stage 3);and carbonate-quartz(stage 4).Three types of inclusions were distinguished,based on fluid composition,phase assemblages and mode of homogenization.Type A:H_(2)O-rich fluid inclusions show 2 phases(liquid H_(2)O(LH_(2)O)+vapour H_(2)O(VH_(2)O))at room temperature and homogenize to the liquid phase.Type B:H_(2)O-CO_(2)fluid inclusions contain 2–3 phases(liquid H_(2)O(LH_(2)O)+vapour CO_(2)(VCO_(2));liquid H_(2)O(LH_(2)O)+liquid CO_(2)(LCO_(2)));liquid H_(2)O(LH_(2)O)+liquid CO_(2)(LCO_(2))+vapour CO_(2)(VCO_(2)))at room temperature and homogenized to the liquid H_(2)O phase.Type C:H_(2)O-CO_(2)fluid inclusions show 2 phases(liquid H_(2)O(LH_(2)O)+liquid CO_(2)(LCO_(2))at room temperature and homogenize to a critical state.CO_(2)is clearly more enriched in the fluid inclusions of stages 2 and 3 than in stage 1.Stage 1 is dominated by type A(H_(2)O-rich)inclusions with homogenization temperatures(Th)of 220–359℃and salinities of 1.1–3.1 wt%NaCl equivalent.Type B(CO_(2)-rich)inclusions gradually increase in stages 2 and 3.The Th range of type B inclusions in stage 2 is 241–397℃with salinities of 2.2–6.9 wt%NaCl equivalent;the Th range of type A inclusions is 217–373℃with salinities of 1.2–8.1 wt%NaCl equivalent.The Th range of type B inclusions in stage 3 is 215–361℃with salinities of 2.9–6.1 wt%NaCl equivalent;the range of type A inclusions is 158–351℃with a salinity of 0.7–5.5 wt%NaCl equivalent.Stage 4 is characterized by type A with Th of 151–250℃and salinities of 0.9–8.3 wt%NaCl equivalent.The mapping results show that elements As,Te and Sb are more concentrated in vapour CO_(2)than in liquid H_(2)O at room temperature,which suggests that vapour components are more able to transport elements when phase separation occurs.The SRXRF quantitative results show that Au,Cl,S and some other metals are obviously more enriched in the fluid inclusions of stages 2 and 3 than those in stage 1.Additionally,the contents of S in stages 1–3 are much lower than those of Cl,which suggests that gold might migrate mainly in the form of a gold-chloride complex.Au is more enriched in type B fluid inclusions than in type A fluid inclusions,which suggests that the enrichment and migration of gold are closely related to CO_(2)and CO_(2)plays a critical role in the migration and enrichment of gold.The trace elements in the fluid have a similar change trend to those in the Yanshanian syenogranite distributed in the southeastern part of the mining area,which may provide some evidence for an intrusion-related genesis for the Dongping gold deposit.
文摘The Dongping gold deposit, situated on the northern margin of the North China Platform, is a composite deposit composed of auriferous quartz vein-type and altered rock-type ore bodies. It is hosted in the inner contact zone of an alkaline intrusion which was intruded into Archean metamorphic rocks and was formed not later than the Hercynian peried. Auriferous quartz veins of the deposit are dated with the fluid inclusion Rb-Sr isochron method at 103 ±4Ma, indicating that the gold deposit was formed in the Yenshanian period. 87Sr/86Sr sourcetracing shows the ore-forming materials came dominantly from alkaline intrusions. These results, combined with other isotope and REE data, suggest that the Dengping gold deposit is not a traditional magmatic hydrothermal deposit, but a reworked hydrothermal deposit related to heated and evoved meteoric water.
文摘Located at the boundary of Chongli county, Chicheng county and Xuanhua county of Heibei province, the Dongping gold deposit is genetically affiliated to the late Jurassic- early Cretaceous volcanics and intrusives. The ore body is quartz vein- and alteration-type and pyrite and quartz are the dominant gold-bearing minerals.
文摘大高庄铁矿属"鞍山式"沉积变质型铁矿床,矿体隐伏于地下40~48 m,赋存于泰山岩群山草峪组地层中,岩性为磁铁角闪石英岩,矿床由3个矿带9个矿体组成,其中Ⅰ-1为主矿体,矿床平均品位TFe 30.09%,m Fe 22.51%。矿石工业类型为需选弱磁性贫铁矿石。通过对大高庄铁矿地质特征及矿床成因进行分析研究,对今后寻找同类型铁矿以及选择有效合理的勘探方法和手段具有重要意义。
文摘东坪式金矿床产于华北地台北缘金矿成矿带的冀西北金矿集中区,构造上位于华北克拉通北缘深大断裂-尚义-赤城断裂的南侧。金矿床产于泥盆纪早期(386~410Ma)水泉沟正长岩杂岩体内及接触带附近,矿体分布受脆-韧性剪切断裂构造的制约。金矿成矿作用具有多期次的特点,成矿时代为燕山期(156~203Ma)。矿石类型主要为石英脉型、石英网脉+脉旁钾硅化蚀变岩型和钾硅化蚀变岩型,具有典型的碱性岩金矿的金-碲组合,(含)金矿物主要为自然金、碲金矿和碲金银矿。流体包裹体的 H、O 及 He 同位素研究表明,成矿流体为以大气降水主的混合热液流体并可能存在深源流体的参与。矿床的 S、Pb、Sr 和 Si 同位素组成表明,金矿成矿物质主要来源于正长岩杂岩体,部分源于太古宙桑干群变质岩和燕山期花岗岩。因此,东坪式金矿是由燕山期伸展构造环境下热液流体在上涌地幔及岩浆活动的热驱动下对泥盆纪早期形成的正长岩交代改造的产物。