We have used the three-dimensional EHMO crystal orbital program to calculate theband structures of the crystalline C<sub>60</sub>, K<sub>3</sub>C<sub>60</sub>, K<sub>6</sub...We have used the three-dimensional EHMO crystal orbital program to calculate theband structures of the crystalline C<sub>60</sub>, K<sub>3</sub>C<sub>60</sub>, K<sub>6</sub>C<sub>60</sub>, Rb<sub>3</sub>C<sub>60</sub>,Rb<sub>6</sub>C<sub>60</sub>, RbCs<sub>2</sub>C<sub>60</sub>, Rb<sub>2</sub>C-(60),KRb<sub>2</sub>C<sub>60</sub>, K<sub>2</sub>CsC<sub>60</sub>, K<sub>2</sub>RbC<sub>60</sub>, Na<sub>2</sub>CsC<sub>60</sub>, Li<sub>2</sub>CsC<sub>60</sub>, Na<sub>2</sub>RbC<sub>60</sub>. and Na<sub>2</sub>KC<sub>60</sub>. Our calculationresults include the band structures, density of states, net charges of both atoms andorbitals, crystal orbital vectors and various overlap populations between different atoms anddifferent orbitals within or outside unit cells and various projected density of states. Allthis useful information could not only explain the superconductivity of A<sub>3</sub>C<sub>60</sub>展开更多
文摘We have used the three-dimensional EHMO crystal orbital program to calculate theband structures of the crystalline C<sub>60</sub>, K<sub>3</sub>C<sub>60</sub>, K<sub>6</sub>C<sub>60</sub>, Rb<sub>3</sub>C<sub>60</sub>,Rb<sub>6</sub>C<sub>60</sub>, RbCs<sub>2</sub>C<sub>60</sub>, Rb<sub>2</sub>C-(60),KRb<sub>2</sub>C<sub>60</sub>, K<sub>2</sub>CsC<sub>60</sub>, K<sub>2</sub>RbC<sub>60</sub>, Na<sub>2</sub>CsC<sub>60</sub>, Li<sub>2</sub>CsC<sub>60</sub>, Na<sub>2</sub>RbC<sub>60</sub>. and Na<sub>2</sub>KC<sub>60</sub>. Our calculationresults include the band structures, density of states, net charges of both atoms andorbitals, crystal orbital vectors and various overlap populations between different atoms anddifferent orbitals within or outside unit cells and various projected density of states. Allthis useful information could not only explain the superconductivity of A<sub>3</sub>C<sub>60</sub>