期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of Doped Lanthanum Gallate Solid Electrolytes 被引量:1
1
作者 蒋凯 王海霞 +3 位作者 郑立庆 杨林 孟健 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第3期301-306,共6页
Development of the doped lanthanum gallate solid electrolytes in the recent years was reviewed. The structure and oxygen ion transference mechanism were discussed. Effects of alkali earths, transition metals, and impu... Development of the doped lanthanum gallate solid electrolytes in the recent years was reviewed. The structure and oxygen ion transference mechanism were discussed. Effects of alkali earths, transition metals, and impurities on electrical conductivity of the doped lanthanum gallates were also discussed. The applications of doped lanthanum gallate were described. The current problems and corresponding strategies were explored. 展开更多
关键词 inorganic material chemistry solid electrolyte solid oxide fuel cells doped lanthanum gallate rare earths
下载PDF
Preparation and Properties of Doped Lanthanum Gallate Film on a Ni/SDC Porous Anode Support
2
作者 HE Qiang HE Tian-min PEI Li JI Yuan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期643-646,共4页
A 65. 8-μm dense doped lanthanum gallate La0.8Sr0.2 Ga0.85 Mg0.15 O2.825(LSGM)film was prepared on a porous Ni/SDC(samarium doped ceria, Ce0.8Sm0.2O1.9 ) anode support by colloid susponsion deposition with incomp... A 65. 8-μm dense doped lanthanum gallate La0.8Sr0.2 Ga0.85 Mg0.15 O2.825(LSGM)film was prepared on a porous Ni/SDC(samarium doped ceria, Ce0.8Sm0.2O1.9 ) anode support by colloid susponsion deposition with incomplete crystallization LSGM powder as a starting material. The phase composition and micromorphology of the LSGM film were characterized by X-ray diffraction and scanning electron microscopy. The electrical properties of the LSGM film and the performances of the LSGM film solid oxide fuel cell were also analyzed. The results show that beth the dense LSGM film on the porous anode support, and the required phase composition of the LSGM film were obtained simultaneously by sintering at 1400 ℃ for 6 h. The adhesion between the LSGM film and the porous anode support is very strong. The electrical conductivities of the LSGM film on the porous anode support are 0. 113 and 0. 173 S/cm at 800 and 850℃, respectively. The maximum output power density of the LSGM film cell is 177 mW/cm^2 at 700℃. 展开更多
关键词 doped lanthanum gallate FILM Electrical property Solid oxide fuel cell Anode support
下载PDF
Oxygen ion conductivity of La_(0.8)Sr_(0.2)Ga_(0.83)Mg_(0.17-x)Co_xO_(3-δ) synthesized by laser rapid solidification
3
作者 张洁 袁超 +2 位作者 王俊俏 梁二军 晁明举 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期568-575,共8页
Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique ... Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification. 展开更多
关键词 doped lanthanum gallate laser rapid solidification oxygen ion conductivity activation energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部