Optoelectronic applications require the development of new fluorescent and efficient luminescent materials, free of toxicity, low in cost, and easy to produce. In this way the synthesis of zinc-oxide (ZnO) quantum dot...Optoelectronic applications require the development of new fluorescent and efficient luminescent materials, free of toxicity, low in cost, and easy to produce. In this way the synthesis of zinc-oxide (ZnO) quantum dots (QDs) has recently received special attention due to their good optical, electrical and chemical properties with low production costs and blue light emission. In this work ZnO QDs were successfully doped with europium in order to obtain a tunable emission luminescence from blue emission of ZnO to red emission of europium as a function of wavelength excitation. Results show an efficient blue to red tuning when the excitation wavelength was changed from 317 nm to 395 nm, respectively. This opens the possibility of having new optical devices to produce different color emission using the same material.展开更多
The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.T...The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect,while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs.The stability of ZnO QDs was studied with different dispersion degrees at 0?C and at room temperature of 25?C.The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time.With the ageing of Zn O QDs,the agglomeration is aggravated and the surface defects increase,which leads to the defect emission.展开更多
Environmental pollution jeopardizes our existence. For this purpose, research is moving more and more towards the search for economic means and green chemistry to curb this phenomenon. In this context, the photocataly...Environmental pollution jeopardizes our existence. For this purpose, research is moving more and more towards the search for economic means and green chemistry to curb this phenomenon. In this context, the photocatalytic activity of zinc sulfide nanoparticles (ZnS NPs) and nanostructured composite ZnS/carbon dots (ZnS/CDs) was evaluated after their synthesis. The results of X-ray diffraction (XRD) analysis indicate that the crystal structure of ZnS/CDs is identical to that of the cubic phase structure of ZnS, revealing that the cubic phase structure of ZnS was not altered in the presence of CDs. Indeed, there is no additional peak in the crystal structure of ZnS/CDs, revealing that the crystalline structure of ZnS is not responsible for the difference in photocatalytic activity between ZnS/CDs and ZnS NPs. Moreover, analysis performed by transmission electron microscopy (TEM) shows aggregation of the synthesized ZnS and ZnS/CDs nanoparticles with an average size estimated around 10 nm and 12 nm, respectively. In addition, the reflectance study in the visible range shows a reduction in the sunlight reflection intensity using ZnS/CDs compared to the capability of ZnS NPs. Photocatalytic degradation tests reveal that ZnS/CDs have the best methylene blue (MB) degradation rate. Indeed, under the optimal conditions, the photocatalytic activity can reach 100% efficiency within 100 min and 240 min of sunlight exposure for the degradation of 7.5 mg/L MB using ZnS/CDs and ZnS, respectively. This improvement in photocatalytic activity of ZnS/CDs may be due to the presence of CDs which can permit to undergo a reduction of reflection properties of ZnS NPs in the visible range. These results show that CDs can play a key role in enhancing the photocatalytic activity of ZnS, and suggest that ZnS/CDs could be used as eco-friendly composite materials for the degradation of organic pollutants of similar structures in the aquatic environment under solar irradiation.展开更多
文摘Optoelectronic applications require the development of new fluorescent and efficient luminescent materials, free of toxicity, low in cost, and easy to produce. In this way the synthesis of zinc-oxide (ZnO) quantum dots (QDs) has recently received special attention due to their good optical, electrical and chemical properties with low production costs and blue light emission. In this work ZnO QDs were successfully doped with europium in order to obtain a tunable emission luminescence from blue emission of ZnO to red emission of europium as a function of wavelength excitation. Results show an efficient blue to red tuning when the excitation wavelength was changed from 317 nm to 395 nm, respectively. This opens the possibility of having new optical devices to produce different color emission using the same material.
基金Project supported by the FRFCU(Grant No.2016JBM066)863 Program(Grant No.2013AA032205)+1 种基金the National Natural Science Foundation of China(Grant Nos.61575019,51272022,and 11474018)RFDP(Grant Nos.20120009130005 and 20130009130001)
文摘The ZnO quantum dots(QDs) were synthesized with improved chemical solution method.The size of the ZnO QDs is exceedingly uniform with a diameter of approximately 4.8 nm,which are homogeneously dispersed in ethanol.The optical absorption edge shifts from 370 nm of bulk material to 359 nm of QD materials due to the quantum size effect,while the photoluminescence peak shifts from 375 nm to 387 nm with the increase of the density of ZnO QDs.The stability of ZnO QDs was studied with different dispersion degrees at 0?C and at room temperature of 25?C.The agglomeration mechanisms and their relationship with the emission spectra were uncovered for the first time.With the ageing of Zn O QDs,the agglomeration is aggravated and the surface defects increase,which leads to the defect emission.
文摘Environmental pollution jeopardizes our existence. For this purpose, research is moving more and more towards the search for economic means and green chemistry to curb this phenomenon. In this context, the photocatalytic activity of zinc sulfide nanoparticles (ZnS NPs) and nanostructured composite ZnS/carbon dots (ZnS/CDs) was evaluated after their synthesis. The results of X-ray diffraction (XRD) analysis indicate that the crystal structure of ZnS/CDs is identical to that of the cubic phase structure of ZnS, revealing that the cubic phase structure of ZnS was not altered in the presence of CDs. Indeed, there is no additional peak in the crystal structure of ZnS/CDs, revealing that the crystalline structure of ZnS is not responsible for the difference in photocatalytic activity between ZnS/CDs and ZnS NPs. Moreover, analysis performed by transmission electron microscopy (TEM) shows aggregation of the synthesized ZnS and ZnS/CDs nanoparticles with an average size estimated around 10 nm and 12 nm, respectively. In addition, the reflectance study in the visible range shows a reduction in the sunlight reflection intensity using ZnS/CDs compared to the capability of ZnS NPs. Photocatalytic degradation tests reveal that ZnS/CDs have the best methylene blue (MB) degradation rate. Indeed, under the optimal conditions, the photocatalytic activity can reach 100% efficiency within 100 min and 240 min of sunlight exposure for the degradation of 7.5 mg/L MB using ZnS/CDs and ZnS, respectively. This improvement in photocatalytic activity of ZnS/CDs may be due to the presence of CDs which can permit to undergo a reduction of reflection properties of ZnS NPs in the visible range. These results show that CDs can play a key role in enhancing the photocatalytic activity of ZnS, and suggest that ZnS/CDs could be used as eco-friendly composite materials for the degradation of organic pollutants of similar structures in the aquatic environment under solar irradiation.