On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most signifi...On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.展开更多
Based on data collected from a temporal seismic network, and in addition to the data from some nearby permanent stations, we investigate the velocity structure and seismicity in the Rongchang gas field, where signific...Based on data collected from a temporal seismic network, and in addition to the data from some nearby permanent stations, we investigate the velocity structure and seismicity in the Rongchang gas field, where significant injection-induced seismicity has been identified. First, we use receiver functions from distant earthquakes to invert detailed 1-D velocity structures beneath typical stations. Then, we use the double-difference hypocenter location method to re-locate earthquakes of the 2010 MLS. 1 earthquake sequence that occurred in the region. The re-located hypocenters show that the 2010 MLS. 1 earthquake sequence was distributed in a small area surrounding major injection wells and clustered mostly along pre-existing faults. Major earthquakes show a focal depth less than 5km with a dominant depth of -2km, a depth of major reservoirs and injection wells. We thus conclude that the 2010 ML 5. 1 earthquake sequence might have been induced by the deep well injection of unwanted water at a depth - 3km in the Rongchang gas field.展开更多
The mainshock location of the Badong MsS. 1 earthquake is determined using four location methods : the simplex method, HYP2000, hyposat, and locSAT; the 350 aftershocks over 3 months are relocated using the double di...The mainshock location of the Badong MsS. 1 earthquake is determined using four location methods : the simplex method, HYP2000, hyposat, and locSAT; the 350 aftershocks over 3 months are relocated using the double difference location method. The results indicate that aftershocks are distributed as bands along the NEE direction and that the aftershocks 1 month after the mainshock, which are mainly distributed in the west of the mainshock and near the Gaoqiao fault, arc shallow earthquakes within 5 km; the depth of each after- shock after one month is deeper, and two distinct fault planes, for which the geological occurrence is similar to the Gaoqiao and Zhoujiashan-Niukou fault, are shaped. The frequency-spectrum analysis of the recorded wave- form in 12 seismic events indicates that the corner frequency of the mainshock is significantly lower than that of its aftershock and is also lower than a tectonic earthquake of the same magnitude. We considered that this result is related to the constraint of the parameter calibration relationship in the focal spectrum and the lithology change due to water erosion. Combined with the focal mechanism and geological tectonic setting, we conclude that the occurrence of the earthquake is related to the activity of the Daping and Gaoqiao fault and is a reser- voir-induced tectonic seismicity.展开更多
文摘On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.
基金supported by the grants of Spark Program of China Earthquake Administration ( XH12038Y )the State Key Laboratory of Earthquake Dynamic( LED2008B04)+1 种基金Science and Technology Program of Chongqing Municipality in 2011 (Grant No. CSTC,2011AC0149)Research on the New Pattern and Key Techniques of the Earthquake Emergency Decision in Southwest China (201108013)
文摘Based on data collected from a temporal seismic network, and in addition to the data from some nearby permanent stations, we investigate the velocity structure and seismicity in the Rongchang gas field, where significant injection-induced seismicity has been identified. First, we use receiver functions from distant earthquakes to invert detailed 1-D velocity structures beneath typical stations. Then, we use the double-difference hypocenter location method to re-locate earthquakes of the 2010 MLS. 1 earthquake sequence that occurred in the region. The re-located hypocenters show that the 2010 MLS. 1 earthquake sequence was distributed in a small area surrounding major injection wells and clustered mostly along pre-existing faults. Major earthquakes show a focal depth less than 5km with a dominant depth of -2km, a depth of major reservoirs and injection wells. We thus conclude that the 2010 ML 5. 1 earthquake sequence might have been induced by the deep well injection of unwanted water at a depth - 3km in the Rongchang gas field.
基金supported by the Spark Program of Earthquake Sciences(XH14035YSX)
文摘The mainshock location of the Badong MsS. 1 earthquake is determined using four location methods : the simplex method, HYP2000, hyposat, and locSAT; the 350 aftershocks over 3 months are relocated using the double difference location method. The results indicate that aftershocks are distributed as bands along the NEE direction and that the aftershocks 1 month after the mainshock, which are mainly distributed in the west of the mainshock and near the Gaoqiao fault, arc shallow earthquakes within 5 km; the depth of each after- shock after one month is deeper, and two distinct fault planes, for which the geological occurrence is similar to the Gaoqiao and Zhoujiashan-Niukou fault, are shaped. The frequency-spectrum analysis of the recorded wave- form in 12 seismic events indicates that the corner frequency of the mainshock is significantly lower than that of its aftershock and is also lower than a tectonic earthquake of the same magnitude. We considered that this result is related to the constraint of the parameter calibration relationship in the focal spectrum and the lithology change due to water erosion. Combined with the focal mechanism and geological tectonic setting, we conclude that the occurrence of the earthquake is related to the activity of the Daping and Gaoqiao fault and is a reser- voir-induced tectonic seismicity.