期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
面向网络流量数据增强的生成对抗网络改进研究
1
作者 张雅雯 张玉臣 +1 位作者 吴越 李程 《计算机工程与应用》 CSCD 北大核心 2024年第18期275-284,共10页
网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少... 网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少数类流量增强。提出基于Gumbel-sigmoid分布的离散生成器,获得近似于离散数据的光滑可导分布生成离散特征,并将其与连续数据生成器并联运行,二者结果串联组合,获得数据整体分布情况;以内积形式融合条件信息和特征信息,克服传统方法出现假设空间增大的问题,缓解模型训练过程中的不稳定现象;在损失函数中引入梯度惩罚因子,将判别器梯度限定在一定范围内,有效缓解梯度爆炸。利用UNSW-NB15数据集,从生成样本质量和模型有效性两个角度检验模型性能。实验结果证明,与其他数据增强方法相比,PD-DcGAN在准确率、精确率、召回率和F1得分上分别平均提高2.72%、1.72%、1.87%和1.16%;与原始数据集相比,对难以检测的Analysis、Backdoors、Exploits、Shellcode和Worms等少数类流量检测性能提升明显,分别从不足1%分别提升至7.93%、6.53%、15.72%、14.02%和10.91%。 展开更多
关键词 生成对抗网络 双生成器结构 数据增强 不平衡数据集 网络流量分类
下载PDF
基于双判别器的GANomaly异常检测方法研究
2
作者 刘韵婷 谭明晓 +1 位作者 高宇 戴佳霖 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期568-575,共8页
在异常检测领域中,生成对抗网络(Generative Adversarial Nets, GAN)和自编码器(Autoencoder, AE)近年来取得了较好的应用效果。然而,现有的基于GAN的异常检测模型普遍存在重构能力差的问题。针对于此,该文提出一种双判别器的GANomaly... 在异常检测领域中,生成对抗网络(Generative Adversarial Nets, GAN)和自编码器(Autoencoder, AE)近年来取得了较好的应用效果。然而,现有的基于GAN的异常检测模型普遍存在重构能力差的问题。针对于此,该文提出一种双判别器的GANomaly网络模型,其中,全局判别器用于提高图像的重构能力,局部判别器用于提高在空间层次的编码能力。分别在MvTec数据集和自制轮胎X光图像数据集上对文中所提方法进行验证,实验结果表明,该方法能够有效提升模型的重构能力,降低异常分数阈值,提高异常检测的准确率。 展开更多
关键词 异常检测 深度学习 双判别器 生成对抗网络
下载PDF
结构引导的渐进式生成对抗壁画修复 被引量:2
3
作者 陈永 陈锦 陶美风 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第6期1247-1259,共13页
针对破损壁画图像修复过程中存在的结构修复不当及修复后壁画细节重构丢失等问题,提出了一种基于结构引导的渐进式生成对抗壁画修复深度学习模型。设计结构生成器对壁画缺失结构内容进行修复,得到修复的壁画结构图像。通过壁画生成器生... 针对破损壁画图像修复过程中存在的结构修复不当及修复后壁画细节重构丢失等问题,提出了一种基于结构引导的渐进式生成对抗壁画修复深度学习模型。设计结构生成器对壁画缺失结构内容进行修复,得到修复的壁画结构图像。通过壁画生成器生成对抗学习,结合改进的双池化SKNet多尺度特征提取模块,利用修复后的结构图像引导破损壁画实现渐进式修复,以提高壁画的细节特征学习能力。通过局部判别器和全局判别器,完成对结构图像和壁画图像的重构判别,增强壁画修复效果的全局一致性。通过对真实敦煌壁画数字化修复的实验表明:所提方法能够有效修复破损的敦煌壁画,修复后的壁画具有更好的结构及细节信息,在主客观评价指标上均优于比较方法。 展开更多
关键词 图像重构 壁画修复 结构引导 双池化特征选择 生成对抗网络
下载PDF
基于双重判别解码器的三维点云形状补全网络 被引量:1
4
作者 孙进 马昊天 +1 位作者 雷震霆 梁立 《哈尔滨理工大学学报》 CAS 北大核心 2023年第5期68-74,共7页
针对碗状文物模型由于碎片缺失导致的逆向几何重建保真度不高的问题,为此提出了一种基于双重判别解码器的三维点云形状补全网络。首先基于编码解码器构建基本点云生成网络,然后根据生成对抗网络框架优化解码器结构,通过将全局特征进行... 针对碗状文物模型由于碎片缺失导致的逆向几何重建保真度不高的问题,为此提出了一种基于双重判别解码器的三维点云形状补全网络。首先基于编码解码器构建基本点云生成网络,然后根据生成对抗网络框架优化解码器结构,通过将全局特征进行解码获取目标骨架点云,保证点云的全局特征,进而在对骨架点云的基础上进一步进行局部点云细化生成判别,保证目标点云的局部特征。最后面向特征缺失拼接模型搭建双分支形状补全网络。实验结果表明在公开数据集ShapeNet的点云补全实验中,本文方法的平均误差更小,相较对比网络,本文方法在碗状文物模型的三维形状补全任务更好,平均倒角距离提高了20.2%,为后续的模型逼真化提供了一个基础,具有更强的性能和良好的应用价值。 展开更多
关键词 几何重建 深度学习 生成对抗网络 双重判别解码器 双分支形状补全 倒角距离
下载PDF
面向集成电路拥塞预测的版图数据扩充方法
5
作者 莫桂棋 夏益民 +2 位作者 邢延 李卫军 蔡述庭 《计算机应用》 CSCD 北大核心 2023年第S02期261-267,共7页
针对深度学习领域中集成电路(IC)版图数据集不充足导致预测模型准确度有限的问题,基于双生成对抗网络(DoubleGAN),提出了一种面向拥塞预测的版图数据扩充和自动标注方法。首先,利用5层反卷积网络结构搭建特征图生成模型,利用U-net结构... 针对深度学习领域中集成电路(IC)版图数据集不充足导致预测模型准确度有限的问题,基于双生成对抗网络(DoubleGAN),提出了一种面向拥塞预测的版图数据扩充和自动标注方法。首先,利用5层反卷积网络结构搭建特征图生成模型,利用U-net结构搭建标签自动标注模型;然后,以Wasserstein距离为损失函数,训练以上模型;最后,原数据集通过以上模型扩充一定倍数后作为训练集,代入拥塞预测模型,提升预测的准确度。在拥塞预测数据集上进行数据生成实验,DoubleGAN生成数据的FID(Fréchet Inception Distance)的平均值为165.943,质量较好。与传统、深度卷积生成对抗网络(DCGAN)扩充方法进行对比实验,使用DoubleGAN扩充2倍时的预测方法,在归一化均方根误差(NRMS)、峰值信噪比(PSNR)、结构相似衡量(SSIM)指标上均优于传统方法和DCGAN扩充方法;对比数据扩充前的拥塞预测模型,各指标均有1.34%~17.98%的改善效果,实验结果表明所提扩充方法在总体上能够提高预测模型的准确度。 展开更多
关键词 深度学习 集成电路 双生成对抗网络 拥塞预测 数据扩充 自动标注
下载PDF
基于双循环生成对抗网络和Dense-Net的木材缺陷检测方法 被引量:3
6
作者 解晨辉 杨博凯 李荣荣 《林业工程学报》 CSCD 北大核心 2023年第4期129-136,共8页
木材缺陷智能检测技术可以有效降低人工误检带来的经济损失,对提高木材加工智能化水平具有重要意义。提出了一种木材缺陷智能检测算法,通过双循环生成对抗网络(double least generative adversarial networks,DLGAN)及密集卷积网络(Dens... 木材缺陷智能检测技术可以有效降低人工误检带来的经济损失,对提高木材加工智能化水平具有重要意义。提出了一种木材缺陷智能检测算法,通过双循环生成对抗网络(double least generative adversarial networks,DLGAN)及密集卷积网络(Dense-Net)来检测色差、虫眼、裂纹、节子和伤疤等5种木材常见缺陷。首先,使用DLGAN技术扩充数据集,提高数据集的多样性和数量,缓解了因训练数据不足而导致的过拟合问题;其次,基于Dense-Net的特点,采用密集的卷积块序列提高对微弱特征的提取和学习能力,以便更好地检测木材缺陷。试验结果表明,相比VGG16、Inception-v2、ResNet 3种经典卷积神经网络,基于DLGAN增广数据集训练的Dense-Net模型有效提高了木材缺陷检测模型的性能,平均准确率达到92.7%,在只使用少量训练数据的情况下模型依然具有良好的图像生成能力和训练鲁棒性。 展开更多
关键词 木材缺陷检测 双循环生成对抗网络 Dense-Net 神经网络 智能制造
下载PDF
潜在低秩表示下的双判别器生成对抗网络的图像融合
7
作者 袁代玉 袁丽华 +1 位作者 习腾彦 李喆 《光学精密工程》 EI CAS CSCD 北大核心 2023年第7期1085-1095,共11页
为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16... 为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16网络提取两种源的低秩分量特征作为该网络的输入,通过生成器和判别器的博弈来生成融合低秩图。最后,将融合稀疏图与融合低秩图进行叠加获得最终的融合结果。实验结果表明,在TNO数据集上,与所列的5种先进方法相比,本文所提出的方法在熵、标准差、互信息、差异相关性总和及多尺度结构相似度5种指标上均获得最优结果,相比于次优值,5种指标分别提高了2.43%,4.68%,2.29%,2.24%,1.74%。在RoadScene数据集上只在差异相关性总和及多尺度结构相似度两种指标上取得最优,另外3种指标仅次于GTF(gradient transfer and total variation minimization)方法,但图像视觉效果明显优于GTF方法。综合主观评价和客观评价分析,本文所提方法确实能获得高质量的融合图像,与多种方法相比具有明显的优势。 展开更多
关键词 红外图像 可见光图像 潜在低秩表示 改进双判别器生成对抗网络 图像评价
下载PDF
基于生成对抗和双重语义感知的配电网量测数据缺失重构 被引量:29
8
作者 杨玉莲 齐林海 +2 位作者 王红 苏林萍 徐永海 《电力系统自动化》 EI CSCD 北大核心 2020年第18期46-54,共9页
传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特... 传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特征并结合双重语义感知重构约束实现数据缺失重构的方法。其中,基于二维卷积的重构模型和量测数据二维灰度图像化训练增强了模型泛化能力和稳定性。该方法无需先验知识的分布假设与显式物理建模,在保证数据特征提取最大化的同时,有效提高了重构数据的精确性。最后,利用实测数据验证了该方法在重构缺失数据上的有效性。 展开更多
关键词 生成对抗网络 双重语义感知 量测数据 数据缺失重构
下载PDF
结合降噪卷积神经网络和条件生成对抗网络的图像双重盲降噪算法 被引量:4
9
作者 井贝贝 郭嘉 +2 位作者 王丽清 陈静 丁洪伟 《计算机应用》 CSCD 北大核心 2021年第6期1767-1774,共8页
针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分... 针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分布后的加噪图片和标签一同送入判别器进行降噪图像的判别;然后,利用判别结果对整个模型的隐层参数进行优化;最后,生成器和判别器在博弈中达到平衡,且生成器的残差捕获能力达到最优。实验结果表明,在Set12数据集上,当噪声水平分别为15、25、50时:所提算法与Dn CNN算法相比,基于像素点间误差评价指标,其峰值信噪比(PSNR)值分别提升了1.388 d B、1.725 d B、1.639 d B;所提算法与三维块匹配(BM3D)、加权核范数最小化(WNNM)、Dn CNN、收缩场级联(CSF)和一致性神经网络(CSNET)等现有算法相比,结构相似性(SSIM)评价指标值平均提升了0.000 2~0.104 1。实验结果验证了所提算法的优越性。 展开更多
关键词 图像双重盲降噪 降噪卷积神经网络 条件生成对抗网络 生成器 判别器
下载PDF
局部细粒度信息引导的双循环一致性绝缘子缺陷样本生成 被引量:2
10
作者 赵潇 李仕林 +3 位作者 李凡 余正涛 张林华 杨勇 《计算机科学》 CSCD 北大核心 2021年第S01期581-586,602,共7页
针对绝缘子缺陷样本数据缺乏,现有生成方法又要求训练样本的规模庞大,且在生成过程中绝缘子缺陷的细节常常被丢失或扭曲,提出了一种基于局部细粒度信息引导的双循环一致性绝缘子缺陷样本生成方法。该方法利用粗糙绝缘子图像作为网络输入... 针对绝缘子缺陷样本数据缺乏,现有生成方法又要求训练样本的规模庞大,且在生成过程中绝缘子缺陷的细节常常被丢失或扭曲,提出了一种基于局部细粒度信息引导的双循环一致性绝缘子缺陷样本生成方法。该方法利用粗糙绝缘子图像作为网络输入,提出通过循环一致性生成对抗方法向精细缺陷绝缘子样本学习,生成较为逼真的缺陷样本。为使生成的样本具有丰富的缺陷特征,提出将生成图像中的缺陷区域图像作为判别网络的输入,并利用对抗约束的方式引导生成网络重点关注缺陷的细粒度信息,从而进一步提升生成绝缘子缺陷样本的真实性和多样性。与现有方法相比,所提方法构建的绝缘子缺陷样本数据集具有逼真、多样化等特点,为提升绝缘子缺陷自动识别的准确性提供了重要的数据基础。 展开更多
关键词 绝缘子 样本生成 局部细粒度信息 双循环一致性 对抗式网络
下载PDF
基于球形矩匹配与特征判别的图像超分辨率重建
11
作者 林静 黄玉清 李磊民 《计算机应用》 CSCD 北大核心 2020年第8期2345-2350,共6页
由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳... 由于网络训练不稳定,基于生成对抗网络(GAN)的图像超分辨率重建存在模式崩溃的现象。针对此问题,提出了一种基于球形几何矩匹配与特征判别的球面双判别器超分辨率重建网络SDSRGAN,通过引入几何矩匹配与高频特征判别来改善网络训练的稳定性。首先,生成器对图像提取特征并通过上采样生成重建图像;接着,球面判别器将图像特征映射至高维球面空间,充分利用特征数据的高阶统计信息;然后,在传统判别器的基础上增加特征判别器,提取图像高频特征,重建特征高频分量和结构分量两方面;最后,对生成器与双判别器进行博弈训练,提高生成器重建图像质量。实验结果表明,所提算法能有效收敛,其网络能够稳定训练,峰值信噪比(PSNR)为31.28 dB,结构相似性(SSIM)为0.872,而与双三次差值、超分辨率残差网络(SRResNet)、加速的卷积神经网络超分辨率(FSRCNN)、基于GAN的单图像超分辨率(SRGAN)和增强型超分辨率生成对抗网络(ESRGAN)算法相比,所提算法的重建图像具有更加逼真的结构纹理细节。所提算法为基于GAN的图像超分辨率研究提供了球形矩匹配与特征判别的双判别方法,在实际应用中可行且有效。 展开更多
关键词 生成对抗网络 图像超分辨率重建 高频特征 双判别器 模式崩溃
下载PDF
基于生成式对抗网络的人脸图像生成 被引量:4
12
作者 于耀淋 张景异 雎付佳 《沈阳理工大学学报》 CAS 2022年第5期29-33,共5页
人脸图像生成是计算机视觉中的经典问题,为保证良好的生成效果,对边界均衡生成式对抗网络(BEGAN)进行改进。首先在训练时对模型使用双时间尺度更新规则(TTUR),对生成和鉴别两个网络应用不同的学习率,并通过修改损失函数、加入推开项(PT... 人脸图像生成是计算机视觉中的经典问题,为保证良好的生成效果,对边界均衡生成式对抗网络(BEGAN)进行改进。首先在训练时对模型使用双时间尺度更新规则(TTUR),对生成和鉴别两个网络应用不同的学习率,并通过修改损失函数、加入推开项(PT)避免网络产生模式聚集的样本;然后使用自注意力机制,将特征图中广泛分离的空间区域转换为不同的特征空间,再进行融合,增强图像的整体质量。在人脸数据集CelebA上的实验表明,与BEGAN算法相比,改进方法生成人脸图像效果有一定提升。 展开更多
关键词 人脸图像生成 生成式对抗网络 双时间尺度 自注意力机制
下载PDF
基于跳跃连接的生成对抗网络人脸修复算法
13
作者 张宇航 张乾 +1 位作者 江漫 苏江涛 《湖南城市学院学报(自然科学版)》 CAS 2022年第2期60-65,共6页
针对生成对抗网络(GAN)在人脸修复任务中存在的修复效果不佳、细节体现不足、修复边缘生硬等问题,提出一种跳跃连接式生成对抗网络。首先,在双判别器模型基础上,通过在生成器中引入跳跃连接来获取更多层间特征来提升图像修复效果;其次,... 针对生成对抗网络(GAN)在人脸修复任务中存在的修复效果不佳、细节体现不足、修复边缘生硬等问题,提出一种跳跃连接式生成对抗网络。首先,在双判别器模型基础上,通过在生成器中引入跳跃连接来获取更多层间特征来提升图像修复效果;其次,采用步长卷积进行采样来减少采样造成的信息损失;最后,在CelebA数据集上进行实验,并用峰值信噪比和结构相似性对结果进行验证。实验结果表明:系统峰值信噪比和结构相似性值分别为32.1587和0.9662,相较原模型分别提高了14.67%和4.35%;该算法明显提高了图像修复质量和训练稳定性。 展开更多
关键词 人脸修复 生成对抗网络 跳跃连接 双判别器模型
下载PDF
复杂环境下多模态手势关键点特征提取算法
14
作者 赖丹晖 罗伟峰 +1 位作者 袁旭东 邱子良 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期2288-2294,共7页
现阶段的手势关键点特征提取在复杂背景环境下存在特征提取精度低等问题,为了解决传统方法中存在的问题,提出复杂环境下多模态手势关键点特征提取算法。首先,通过改进细菌觅食(BFO)优化算法对手势图像进行增强处理;其次,通过条件生成对... 现阶段的手势关键点特征提取在复杂背景环境下存在特征提取精度低等问题,为了解决传统方法中存在的问题,提出复杂环境下多模态手势关键点特征提取算法。首先,通过改进细菌觅食(BFO)优化算法对手势图像进行增强处理;其次,通过条件生成对抗网络对手势图像进行背景去除处理;最后,通过GIFT方法检测手势图像的关键点,并通过多尺度双树复小波变换方法和Gabor滤波方法对手势图像进行多模态手势关键点特征提取。实验结果表明:所提算法的手势关键点特征提取精度更高、效果更好。 展开更多
关键词 改进细菌觅食优化算法 条件生成对抗网络 GABOR滤波器 双树复小波变换 关键点特征提取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部