网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少...网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少数类流量增强。提出基于Gumbel-sigmoid分布的离散生成器,获得近似于离散数据的光滑可导分布生成离散特征,并将其与连续数据生成器并联运行,二者结果串联组合,获得数据整体分布情况;以内积形式融合条件信息和特征信息,克服传统方法出现假设空间增大的问题,缓解模型训练过程中的不稳定现象;在损失函数中引入梯度惩罚因子,将判别器梯度限定在一定范围内,有效缓解梯度爆炸。利用UNSW-NB15数据集,从生成样本质量和模型有效性两个角度检验模型性能。实验结果证明,与其他数据增强方法相比,PD-DcGAN在准确率、精确率、召回率和F1得分上分别平均提高2.72%、1.72%、1.87%和1.16%;与原始数据集相比,对难以检测的Analysis、Backdoors、Exploits、Shellcode和Worms等少数类流量检测性能提升明显,分别从不足1%分别提升至7.93%、6.53%、15.72%、14.02%和10.91%。展开更多
木材缺陷智能检测技术可以有效降低人工误检带来的经济损失,对提高木材加工智能化水平具有重要意义。提出了一种木材缺陷智能检测算法,通过双循环生成对抗网络(double least generative adversarial networks,DLGAN)及密集卷积网络(Dens...木材缺陷智能检测技术可以有效降低人工误检带来的经济损失,对提高木材加工智能化水平具有重要意义。提出了一种木材缺陷智能检测算法,通过双循环生成对抗网络(double least generative adversarial networks,DLGAN)及密集卷积网络(Dense-Net)来检测色差、虫眼、裂纹、节子和伤疤等5种木材常见缺陷。首先,使用DLGAN技术扩充数据集,提高数据集的多样性和数量,缓解了因训练数据不足而导致的过拟合问题;其次,基于Dense-Net的特点,采用密集的卷积块序列提高对微弱特征的提取和学习能力,以便更好地检测木材缺陷。试验结果表明,相比VGG16、Inception-v2、ResNet 3种经典卷积神经网络,基于DLGAN增广数据集训练的Dense-Net模型有效提高了木材缺陷检测模型的性能,平均准确率达到92.7%,在只使用少量训练数据的情况下模型依然具有良好的图像生成能力和训练鲁棒性。展开更多
为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16...为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16网络提取两种源的低秩分量特征作为该网络的输入,通过生成器和判别器的博弈来生成融合低秩图。最后,将融合稀疏图与融合低秩图进行叠加获得最终的融合结果。实验结果表明,在TNO数据集上,与所列的5种先进方法相比,本文所提出的方法在熵、标准差、互信息、差异相关性总和及多尺度结构相似度5种指标上均获得最优结果,相比于次优值,5种指标分别提高了2.43%,4.68%,2.29%,2.24%,1.74%。在RoadScene数据集上只在差异相关性总和及多尺度结构相似度两种指标上取得最优,另外3种指标仅次于GTF(gradient transfer and total variation minimization)方法,但图像视觉效果明显优于GTF方法。综合主观评价和客观评价分析,本文所提方法确实能获得高质量的融合图像,与多种方法相比具有明显的优势。展开更多
针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分...针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分布后的加噪图片和标签一同送入判别器进行降噪图像的判别;然后,利用判别结果对整个模型的隐层参数进行优化;最后,生成器和判别器在博弈中达到平衡,且生成器的残差捕获能力达到最优。实验结果表明,在Set12数据集上,当噪声水平分别为15、25、50时:所提算法与Dn CNN算法相比,基于像素点间误差评价指标,其峰值信噪比(PSNR)值分别提升了1.388 d B、1.725 d B、1.639 d B;所提算法与三维块匹配(BM3D)、加权核范数最小化(WNNM)、Dn CNN、收缩场级联(CSF)和一致性神经网络(CSNET)等现有算法相比,结构相似性(SSIM)评价指标值平均提升了0.000 2~0.104 1。实验结果验证了所提算法的优越性。展开更多
文摘网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少数类流量增强。提出基于Gumbel-sigmoid分布的离散生成器,获得近似于离散数据的光滑可导分布生成离散特征,并将其与连续数据生成器并联运行,二者结果串联组合,获得数据整体分布情况;以内积形式融合条件信息和特征信息,克服传统方法出现假设空间增大的问题,缓解模型训练过程中的不稳定现象;在损失函数中引入梯度惩罚因子,将判别器梯度限定在一定范围内,有效缓解梯度爆炸。利用UNSW-NB15数据集,从生成样本质量和模型有效性两个角度检验模型性能。实验结果证明,与其他数据增强方法相比,PD-DcGAN在准确率、精确率、召回率和F1得分上分别平均提高2.72%、1.72%、1.87%和1.16%;与原始数据集相比,对难以检测的Analysis、Backdoors、Exploits、Shellcode和Worms等少数类流量检测性能提升明显,分别从不足1%分别提升至7.93%、6.53%、15.72%、14.02%和10.91%。
文摘为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16网络提取两种源的低秩分量特征作为该网络的输入,通过生成器和判别器的博弈来生成融合低秩图。最后,将融合稀疏图与融合低秩图进行叠加获得最终的融合结果。实验结果表明,在TNO数据集上,与所列的5种先进方法相比,本文所提出的方法在熵、标准差、互信息、差异相关性总和及多尺度结构相似度5种指标上均获得最优结果,相比于次优值,5种指标分别提高了2.43%,4.68%,2.29%,2.24%,1.74%。在RoadScene数据集上只在差异相关性总和及多尺度结构相似度两种指标上取得最优,另外3种指标仅次于GTF(gradient transfer and total variation minimization)方法,但图像视觉效果明显优于GTF方法。综合主观评价和客观评价分析,本文所提方法确实能获得高质量的融合图像,与多种方法相比具有明显的优势。
文摘针对图像降噪中降噪效果差、计算效率低的问题,提出了一种结合降噪卷积神经网络(Dn CNN)和条件生成对抗网络(CGAN)的图像双重盲降噪算法。首先,使用改进的Dn CNN模型作为CGAN的生成器来对加噪图片的噪声分布进行捕获;其次,将剔除噪声分布后的加噪图片和标签一同送入判别器进行降噪图像的判别;然后,利用判别结果对整个模型的隐层参数进行优化;最后,生成器和判别器在博弈中达到平衡,且生成器的残差捕获能力达到最优。实验结果表明,在Set12数据集上,当噪声水平分别为15、25、50时:所提算法与Dn CNN算法相比,基于像素点间误差评价指标,其峰值信噪比(PSNR)值分别提升了1.388 d B、1.725 d B、1.639 d B;所提算法与三维块匹配(BM3D)、加权核范数最小化(WNNM)、Dn CNN、收缩场级联(CSF)和一致性神经网络(CSNET)等现有算法相比,结构相似性(SSIM)评价指标值平均提升了0.000 2~0.104 1。实验结果验证了所提算法的优越性。