期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Drosophila RecQ5 is required for efficient SSA repair and suppression of LOH in vivo 被引量:5
1
作者 Yixu Chen Wen Dui +3 位作者 Zhongsheng Yu Changqing Li Jun Ma Renjie Jiao 《Protein & Cell》 SCIE CSCD 2010年第5期478-490,共13页
RecQ5 in mammalian cells has been suggested to suppress inappropriate homologous recombination.However,the specific pathway(s)in which it is involved and the underlining mechanism(s)remain poorly understood.We took ad... RecQ5 in mammalian cells has been suggested to suppress inappropriate homologous recombination.However,the specific pathway(s)in which it is involved and the underlining mechanism(s)remain poorly understood.We took advantage of genetic tools in Drosophila to investigate how Drosophila RecQ5(dRecQ5)functions in vivo in homologous recombination-mediated double strand break(DSB)repair.We generated null alleles of dRecQ5 using the targeted recombination technique.The mutant animals are homozygous viable,but with growth retardation during development.The mutants are sensitive to both exogenous DSB-inducing treatment,such as gamma-irradiation,and endogenously induced double strand breaks(DSBs)by I-Sce I endonuclease.In the absence of dRecQ5,single strand annealing(SSA)-mediated DSB repair is compromised with compensatory increases in either inter-homologous gene conversion,or non-homologous end joining(NHEJ)when inter-chromosomal homologous sequence is unavailable.Loss of function of dRecQ5 also leads to genome instability in loss of heterozygosity(LOH)assays.Together,our data demonstrate that dRecQ5 functions in SSA-mediated DSB repair to achieve its full efficiency and in suppression of LOH in Drosophila. 展开更多
关键词 Drosophila RecQ5 double strand break repair homologous recombination nonhomologous end joining single strand annealing RecQ helicase
原文传递
New perspectives on epigenetic modifications and PARP inhibitor resistance in HR-deficient cancers
2
作者 Rachel Bayley Ellie Sweatman Martin R.Higgs 《Cancer Drug Resistance》 2023年第1期35-44,共10页
The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP)ribose polymerase(PARP)inhibitors.However,the efficacy of these compounds is hampered by resistance,which is attrib... The clinical treatment of DNA-repair defective tumours has been revolutionised by the use of poly(ADP)ribose polymerase(PARP)inhibitors.However,the efficacy of these compounds is hampered by resistance,which is attributed to numerous mechanisms including rewiring of the DNA damage response to favour pathways that repair PARP inhibitor-mediated damage.Here,we comment on recent findings by our group identifying the lysine methyltransferase SETD1A as a novel factor that conveys PARPi resistance.We discuss the implications,with a particular focus on epigenetic modifications and H3K4 methylation.We also deliberate on the mechanisms responsible,the consequences for the refinement of PARP inhibitor use in the clinic,and future possibilities to circumvent drug resistance in DNA-repair deficient cancers. 展开更多
关键词 double strand break repair histone methylation PARP inhibitor RESISTANCE SETD1A BOD1L H3K4
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部