Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0...Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.展开更多
The fabrication process of Cu/Al2O3/MgF2/Au double-barrier metal/insulator/metal junction (DMIMJ) was introduced, and more stable light emission from this junction was successfully observed. The light emission physi...The fabrication process of Cu/Al2O3/MgF2/Au double-barrier metal/insulator/metal junction (DMIMJ) was introduced, and more stable light emission from this junction was successfully observed. The light emission physical mechanism of the junction was discussed. Results show that light emission spectrum of this structure locates at wavelength of 250-700 nm with two peaks at around 460 nm and 640 nm, which moves towards shorter wavelength region in comparison with that of the Al/Al2O3/Au junction. The light emission efficiency of this junction ranges from 0.7×10^-5-2.0×10^-5, which is 1 to 2 orders higher than that of the single-barrier Al/Al2O3/Au junction. The improved properties of this structure should be due to the electrons resonant tunneling effect in the double-barrier.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106,2012CB927400,2010CB934401,and 2014AA032904)the National High Technology Research and Development Program of China(Grant No.2014AA032904)the National Natural Science Foundation of China(Grant Nos.11434014 and 11104252)
文摘Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.
基金Funded by the National Natural Science Foundation of China (No.69576006)
文摘The fabrication process of Cu/Al2O3/MgF2/Au double-barrier metal/insulator/metal junction (DMIMJ) was introduced, and more stable light emission from this junction was successfully observed. The light emission physical mechanism of the junction was discussed. Results show that light emission spectrum of this structure locates at wavelength of 250-700 nm with two peaks at around 460 nm and 640 nm, which moves towards shorter wavelength region in comparison with that of the Al/Al2O3/Au junction. The light emission efficiency of this junction ranges from 0.7×10^-5-2.0×10^-5, which is 1 to 2 orders higher than that of the single-barrier Al/Al2O3/Au junction. The improved properties of this structure should be due to the electrons resonant tunneling effect in the double-barrier.