A small hole of 0.9mm in diameter is drilled at the theoretical contact point of the convex tooth flank of the measured gear, and the hole leads throughout to the non-working flank. A stylus glued to the core of trans...A small hole of 0.9mm in diameter is drilled at the theoretical contact point of the convex tooth flank of the measured gear, and the hole leads throughout to the non-working flank. A stylus glued to the core of transformer is put into the hole, and the stylus can freely contact with the meshed concave tooth flank. The transformer is installed on the body of gear to be measured. Rotate the positioning worm slowly after loading, and locate the contact point at the hole of convex tooth flank, the displacement value measured is considered as the deformation of convex tooth. The deformations at the middle and the two ends of tooth breadth for the helical gears with double-circular-cra tooth profile whose modules are 3mm and 4mm respectively are measured in the paper.展开更多
A stepped double arc spiral bevel gear tooth profile is examined. The development ofconjugate tooth surfaee of double are profile spiral bevel gears is described. The design and man-ufacture of the cutter is also disc...A stepped double arc spiral bevel gear tooth profile is examined. The development ofconjugate tooth surfaee of double are profile spiral bevel gears is described. The design and man-ufacture of the cutter is also discussed. Experimental results show that these gears have high loadcarrying capacity and that they are suitable for heavily loaded transmission. It is asserted thatsuch gears have higher power-to-weight ratios, are longer-lived, and provide more reliable per-formance than ordinary spiral bevel gears.展开更多
In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of s...In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.展开更多
Based on theory of mechanical dynamics, meshing characteristic as well as thedynamic model of double circular arc helical gearing, an analysis approach and a computer programhave been developed for studying the state ...Based on theory of mechanical dynamics, meshing characteristic as well as thedynamic model of double circular arc helical gearing, an analysis approach and a computer programhave been developed for studying the state of dynamic load and factor of dynamic load of thegearing, the changing situation of dynamic load and dynamic load factor vs some affecting factorssuch as gear width, helix angle and accuracy grade etc are investigated. A series of conclusions areobtained: ①With the increasing in the values of gear width, the dynamic load factor appears slowdecreasing tendency in most region of gear width. ②When the accuracy grades of the gearing areimproved, the values of dynamic load factor decrease. ③The value of dynamic load factor appears adecreasing tendency with the increasing of value of helix angle at the same ratio of criticalrotational speed.展开更多
In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The ...In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.展开更多
文摘A small hole of 0.9mm in diameter is drilled at the theoretical contact point of the convex tooth flank of the measured gear, and the hole leads throughout to the non-working flank. A stylus glued to the core of transformer is put into the hole, and the stylus can freely contact with the meshed concave tooth flank. The transformer is installed on the body of gear to be measured. Rotate the positioning worm slowly after loading, and locate the contact point at the hole of convex tooth flank, the displacement value measured is considered as the deformation of convex tooth. The deformations at the middle and the two ends of tooth breadth for the helical gears with double-circular-cra tooth profile whose modules are 3mm and 4mm respectively are measured in the paper.
文摘A stepped double arc spiral bevel gear tooth profile is examined. The development ofconjugate tooth surfaee of double are profile spiral bevel gears is described. The design and man-ufacture of the cutter is also discussed. Experimental results show that these gears have high loadcarrying capacity and that they are suitable for heavily loaded transmission. It is asserted thatsuch gears have higher power-to-weight ratios, are longer-lived, and provide more reliable per-formance than ordinary spiral bevel gears.
基金Project(2011CB706800-G)supported by the National Basic Research Program of ChinaProject(51375159)supported by the National Natural Science Foundation of China+1 种基金Project(20120162110004)supported by the Postdoctoral Science Foundation of ChinaProject(2015JJ5020)supported by the Science Foundation of Hunan Province,China
文摘In order to effectively improve meshing performance of spiral bevel and hypoid gears generated by the duplex helical method, the effects of straight lined and circular cutting edges profile on meshing and contact of spiral bevel and hypoid gears were investigated analytically. Firstly, a mathematical model of spiral bevel and hypoid gears with circular blade profile was established according to the cutting characteristics of the duplex helical method. Based on a hypoid gear drive, the tooth bearings and the functions of transmission errors of four design cases were analyzed respectively by the use of the tooth contact analysis(TCA), and the contact stresses of the four design cases were analyzed and compared using simulation software. Finally, the curvature radius of the circular profile blade was optimized. The results show that the contact stresses are availably reduced, and the areas of edge contact and severe contact stresses can be avoided by selecting appropriate circular blade profile. In addition, the convex and concave sides are separately modified by the use of different curvature radii of inside and outside blades, which can increase the flexibility of the duplex helical method.
基金This project is supported by Science and Technology Developing Foundation of Tianjin Higher Education (No.20030703).
文摘Based on theory of mechanical dynamics, meshing characteristic as well as thedynamic model of double circular arc helical gearing, an analysis approach and a computer programhave been developed for studying the state of dynamic load and factor of dynamic load of thegearing, the changing situation of dynamic load and dynamic load factor vs some affecting factorssuch as gear width, helix angle and accuracy grade etc are investigated. A series of conclusions areobtained: ①With the increasing in the values of gear width, the dynamic load factor appears slowdecreasing tendency in most region of gear width. ②When the accuracy grades of the gearing areimproved, the values of dynamic load factor decrease. ③The value of dynamic load factor appears adecreasing tendency with the increasing of value of helix angle at the same ratio of criticalrotational speed.
基金Supported by National Natural Science Foundation of China(No.51275147)
文摘In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.