According to the soft-switching pulsed SAW (Submerged arc weld) weld power supply based on the double closed-loop constant current control mode, a small signal mathematic model of main circuit of soft-switching SAW in...According to the soft-switching pulsed SAW (Submerged arc weld) weld power supply based on the double closed-loop constant current control mode, a small signal mathematic model of main circuit of soft-switching SAW inverter was established by applying the method of three-terminal switching device modeling method, and the math-ematic model of double closed-loop phase-shift control system circuit was established by applying the method of state-space averaging method. Dynamic performance of the inverter was analyzed on base of the established math-ematic model, and the tested wave of dynamic performance was shown by experimentation. Research and experimentation show that relation between structure of the power source circuit and dynamic performance of the controlling system can be announced by the established mathematic model, which provides development of power supply and optimized design of controlling parameter with theoretical guidance.展开更多
The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of a...The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of an ideal endothermic quaternary reversible reaction with the most unfavorable ranking of relative volatilities(A + B ■ C + D with α_(A)>α_(C)>α_(D)>α_(B)), the operation rationality of the R-DDWDC is studied in this contribution. The four-point single temperature control system leads to great steady-state discrepancies in the compositions of products C and D and the reason stems essentially from the failure in keeping strictly the stoichiometric ratio between reactants A and B. A temperature plus temperature cascade control scheme is then employed to reinforce the stoichiometric ratio control and helps to secure a substantial abatement in the steady-state discrepancies. A temperature difference plus temperature cascade control scheme is finally synthesized and leads even to better performance than the most effective double temperature difference control scheme. These outcomes reveal not only the operation feasibility of the R-DDWDC but also the general significance of the proposed temperature difference plus temperature cascade control scheme to the inferential control of any other complicated distillation columns.展开更多
Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal ...Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 °C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 °C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.展开更多
A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yie...A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.展开更多
[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting L...[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting Lake area, four treatments as no fertilizer (CK), urea, controlled release nitrogen fertilizer (CRNF) and 70% controlled release nitrogen fertilizer (70% CRNF) were designed in the micro-plot trials from 2005 to 2008. [Result] The rice yield in treatment CRNF at N 150 kg/hm2 was increased by 10.3%, 8.0% and 2.4% compared with treatment of urea, in alluvial sandy loamy paddy soil (ALS), purple calcareous clayey paddy soil (PCS), and reddish yellow loamy paddy soil (RYS), respectively; and the yield in treatment of 70% CRNF was increased by 6.1%, 2.6% and -0.8%, respectively. The ranking order of nitrogen uptake amount by plant in early rice and late rice was CRNF 70% CRNF urea CK in all three types of soil. Nitrogen utilization efficiency of CRNF in above three types of soil was 60.7%, 59.6% and 56.3%, increased by 23.8%, 19.4% and 16.3% compared with that in treatment of urea, respectively. Nitrogen utilization efficiency of CRNF in early rice was increased year by year, and was higher than that of 70% CRNF during the whole experiment stage, while that in late rice was increased first and then decreased from the 3rd year. [Conclusion] Continuous application CRNF could alleviate the decreasing of soil nitrogen fertility and organic carbon especially in ALS, increase rice yield and nitrogen utilization efficiency in double-rice cropping system.展开更多
On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine...On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence, a reconfigurable robust H∞ linear parameter varying controller is developed. The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network. To demonstrate the effectiveness of the proposed method, a double inverted pendulum system, with a fault in the motor tachometer loop, is considered.展开更多
The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. F...The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.展开更多
A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main ...A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main body and payloads is described precisely. A nonlinear disturbance observer is designed for satellite's main body to estimate disturbance torque acted by motion of payloads. Meanwhile, the adaptive fast nonsingular terminal sliding-mode attitude stabilization controller is proposed for satellite's main body to quicken convergence speed of state variables. Similarly, the adaptive fast nonsingular terminal sliding-mode attitude maneuver controller is designed for each payload to weaken the disturbance effect of motion of satellite's main body. Simulation results verify the effectiveness of the proposed method.展开更多
Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to ...Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to realize remote control of computer. After transformation,loading capacity of ammunition feeding machine became large,which could shorten the time of filling shells in the case of short airspace time;one shell launch volume was more,which could improve hail suppression effect; the degree of automation was greatly improved,which could save manpower by more than 50%. It fully embodied the modernization level of Hunan weather modification operation.展开更多
Methods of the comprehensive evaluation have been studied for many years. However, the change speed of evaluated objects was rarely considered by the existing evaluation methods. An evaluation matrix is proposed to re...Methods of the comprehensive evaluation have been studied for many years. However, the change speed of evaluated objects was rarely considered by the existing evaluation methods. An evaluation matrix is proposed to remedy this deficiency. Firstly, the change speed state (CSS) of the evaluated objects is analyzed based on double inspiriting control lines (DICLs), and a matrix of the CSS is constructed. Then, 72 elements in the matrix are analyzed, and formulas describing each CSS are given. The efficiency of the proposed evaluation matrix is proved when the CSS merges with the change speed trend (CST) in the dynamic comprehensive evaluation. Finally, a computing example shows that the proposed evaluation matrix is feasible in the dynamic comprehensive evaluation with the speed feature.展开更多
A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to...A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Two phenoxyherbicide nanocomposites, namely cloprop-layered double hydroxide and cloprop-zinc- layered hydroxide nanocomposites, have been synthesized by using co-precipitation and direct reaction method. PXRD pattern...Two phenoxyherbicide nanocomposites, namely cloprop-layered double hydroxide and cloprop-zinc- layered hydroxide nanocomposites, have been synthesized by using co-precipitation and direct reaction method. PXRD pattern showed an expansion of interlayer spacing with the value of 21.0 Åand 22.7 Åfor cloprop-layered double hydroxide and cloprop-zinc-layered hydroxide nanocomposite, respectively. It is evident from FTIR and elemental analyses that both nanocomposites were successfully intercalated between the interlayers of layered metal hydroxide. Controlled release of cloprop anion from interlayer of nanocomposites for both cloprop-layered double hydroxide and cloprop-zinc-layered hydroxide nanocomposite into phosphate solution was rapid initially and slow thereafter. The percentage of accumulated release of cloprop anion from cloprop-zinc-layered hydroxide nanocomposite was slightly higher than that from cloprop-layered double hydroxide nanocomposite. Kinetic behavior of cloprop release was governed by pseudo-second-order for cloprop-layered double hydroxide nanocomposite while parabolic diffusion for cloprop-zinc-layered hydroxide nanocomposite. Results from this study highlight the potential of both nanocomposites as capsulated material for controlled release of cloprop phenoxyherbicides anion.展开更多
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt...We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.展开更多
Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet...Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based ...Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based on in-situ investigations and theoretical studies,we have summarized typical forms of destruction and identified high stress and unrestricted support at both sides of junction arch as its main causes.In this study,we also presented double-directional control bolt support technology for a large Y-type span intersection,applied to deep intersection engineering in the Jiahe Coal Mine,which has proved effective.展开更多
Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the...Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.展开更多
Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of...Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.展开更多
A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam...A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam. The stability of the model is analyzed by using the new control method. The advantage of the new model with and without the effect of double flux difference is explored by the numerical simulation. The numerical simulations demonstrate that the traffic jam can be alleviated by the control signal.展开更多
文摘According to the soft-switching pulsed SAW (Submerged arc weld) weld power supply based on the double closed-loop constant current control mode, a small signal mathematic model of main circuit of soft-switching SAW inverter was established by applying the method of three-terminal switching device modeling method, and the math-ematic model of double closed-loop phase-shift control system circuit was established by applying the method of state-space averaging method. Dynamic performance of the inverter was analyzed on base of the established math-ematic model, and the tested wave of dynamic performance was shown by experimentation. Research and experimentation show that relation between structure of the power source circuit and dynamic performance of the controlling system can be announced by the established mathematic model, which provides development of power supply and optimized design of controlling parameter with theoretical guidance.
基金the financial support from National Natural Science Foundation of China (21878011)。
文摘The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of an ideal endothermic quaternary reversible reaction with the most unfavorable ranking of relative volatilities(A + B ■ C + D with α_(A)>α_(C)>α_(D)>α_(B)), the operation rationality of the R-DDWDC is studied in this contribution. The four-point single temperature control system leads to great steady-state discrepancies in the compositions of products C and D and the reason stems essentially from the failure in keeping strictly the stoichiometric ratio between reactants A and B. A temperature plus temperature cascade control scheme is then employed to reinforce the stoichiometric ratio control and helps to secure a substantial abatement in the steady-state discrepancies. A temperature difference plus temperature cascade control scheme is finally synthesized and leads even to better performance than the most effective double temperature difference control scheme. These outcomes reveal not only the operation feasibility of the R-DDWDC but also the general significance of the proposed temperature difference plus temperature cascade control scheme to the inferential control of any other complicated distillation columns.
基金Project(51075099)supported by the National Natural Science Foundation of ChinaProject(E201038)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(HIT.NSRIF.2013007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011RFQXG010)supported by the Harbin City Young Scientists Foundation,ChinaProject(LBH-T1102)supported by Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 °C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 °C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.
文摘A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.
基金Supported by the National Key Technology Research and Development Program of China during the11th Five-Year Plan Period(2008BADA4B08)Science and Technology Innovation Project of Hunan Academy of Agricultural Sciences(2010hnnkycx56)~~
文摘[Objective] This study aimed to explore the effects of continuous application of controlled release nitrogen fertilizer under double rice cropping system. [Method] By modeling three types of paddy soils in Dong-Ting Lake area, four treatments as no fertilizer (CK), urea, controlled release nitrogen fertilizer (CRNF) and 70% controlled release nitrogen fertilizer (70% CRNF) were designed in the micro-plot trials from 2005 to 2008. [Result] The rice yield in treatment CRNF at N 150 kg/hm2 was increased by 10.3%, 8.0% and 2.4% compared with treatment of urea, in alluvial sandy loamy paddy soil (ALS), purple calcareous clayey paddy soil (PCS), and reddish yellow loamy paddy soil (RYS), respectively; and the yield in treatment of 70% CRNF was increased by 6.1%, 2.6% and -0.8%, respectively. The ranking order of nitrogen uptake amount by plant in early rice and late rice was CRNF 70% CRNF urea CK in all three types of soil. Nitrogen utilization efficiency of CRNF in above three types of soil was 60.7%, 59.6% and 56.3%, increased by 23.8%, 19.4% and 16.3% compared with that in treatment of urea, respectively. Nitrogen utilization efficiency of CRNF in early rice was increased year by year, and was higher than that of 70% CRNF during the whole experiment stage, while that in late rice was increased first and then decreased from the 3rd year. [Conclusion] Continuous application CRNF could alleviate the decreasing of soil nitrogen fertility and organic carbon especially in ALS, increase rice yield and nitrogen utilization efficiency in double-rice cropping system.
文摘On the basis of the gain-scheduled H∞ design strategy, a novel active fault-tolerant control scheme is proposed. Under the assumption that the effects of faults on the state-space matrices of systems can be of affine parameter dependence, a reconfigurable robust H∞ linear parameter varying controller is developed. The designed controller is a function of the fault effect factors that can be derived online by using a well-trained neural network. To demonstrate the effectiveness of the proposed method, a double inverted pendulum system, with a fault in the motor tachometer loop, is considered.
文摘The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.
基金supported by the National Natural Science Foundation of China(No.91016017)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ12_0160)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20130234)the Changzhou Sci.& Tech.Program (CE20145056)
文摘A robust attitude control methodology is proposed for satellite system with double rotary payloads. The dynamic model is built by the Newton-Euler method and then the dynamic interconneetion between satellite's main body and payloads is described precisely. A nonlinear disturbance observer is designed for satellite's main body to estimate disturbance torque acted by motion of payloads. Meanwhile, the adaptive fast nonsingular terminal sliding-mode attitude stabilization controller is proposed for satellite's main body to quicken convergence speed of state variables. Similarly, the adaptive fast nonsingular terminal sliding-mode attitude maneuver controller is designed for each payload to weaken the disturbance effect of motion of satellite's main body. Simulation results verify the effectiveness of the proposed method.
基金Supported by Topic of the Diagnostic Analysis of Spring Hail Suppression Operation Condition in Hunan
文摘Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to realize remote control of computer. After transformation,loading capacity of ammunition feeding machine became large,which could shorten the time of filling shells in the case of short airspace time;one shell launch volume was more,which could improve hail suppression effect; the degree of automation was greatly improved,which could save manpower by more than 50%. It fully embodied the modernization level of Hunan weather modification operation.
基金supported by the National Natural Science Foundation of China (7127217671302028)+1 种基金the Fundamental Scientific Research Funds for the Central Universities (HEUCF110914)the Heilongjiang Postdoctoral Fund (3236310094)
文摘Methods of the comprehensive evaluation have been studied for many years. However, the change speed of evaluated objects was rarely considered by the existing evaluation methods. An evaluation matrix is proposed to remedy this deficiency. Firstly, the change speed state (CSS) of the evaluated objects is analyzed based on double inspiriting control lines (DICLs), and a matrix of the CSS is constructed. Then, 72 elements in the matrix are analyzed, and formulas describing each CSS are given. The efficiency of the proposed evaluation matrix is proved when the CSS merges with the change speed trend (CST) in the dynamic comprehensive evaluation. Finally, a computing example shows that the proposed evaluation matrix is feasible in the dynamic comprehensive evaluation with the speed feature.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)
文摘A novel double extended state observer(DESO)based on model predictive torque control(MPTC)strategy is developed for three-phase permanent magnet synchronous motor(PMSM)drive system without current sensor.In general,to achieve high-precision control,two-phase current sensors are necessary for successful implementation of MPTC.For this purpose,two ESOs are used to estimate q-axis current and stator resistance respectively,and then based on this,d-axis current is estimated.Moreover,to reduce torque and flux ripple and to improve the performance of the torque and speed,MPTC strategy is designed.The simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘Two phenoxyherbicide nanocomposites, namely cloprop-layered double hydroxide and cloprop-zinc- layered hydroxide nanocomposites, have been synthesized by using co-precipitation and direct reaction method. PXRD pattern showed an expansion of interlayer spacing with the value of 21.0 Åand 22.7 Åfor cloprop-layered double hydroxide and cloprop-zinc-layered hydroxide nanocomposite, respectively. It is evident from FTIR and elemental analyses that both nanocomposites were successfully intercalated between the interlayers of layered metal hydroxide. Controlled release of cloprop anion from interlayer of nanocomposites for both cloprop-layered double hydroxide and cloprop-zinc-layered hydroxide nanocomposite into phosphate solution was rapid initially and slow thereafter. The percentage of accumulated release of cloprop anion from cloprop-zinc-layered hydroxide nanocomposite was slightly higher than that from cloprop-layered double hydroxide nanocomposite. Kinetic behavior of cloprop release was governed by pseudo-second-order for cloprop-layered double hydroxide nanocomposite while parabolic diffusion for cloprop-zinc-layered hydroxide nanocomposite. Results from this study highlight the potential of both nanocomposites as capsulated material for controlled release of cloprop phenoxyherbicides anion.
文摘We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.
基金Supported by National Natural Science Foundation of P. R. China (60404003)the Natural Science Foundation of Hunan Province (03JJY3108)Fok Ying-Tong Education Foundation (94028)
文摘Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金supported by the National Basic Research Program of China (No.2006CB202200)the Major Program of the National Natural Science Foundation of China (No.50490270)the Innovative Team Development Project of the Ministry of Education of China (No.IRT0656)
文摘Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based on in-situ investigations and theoretical studies,we have summarized typical forms of destruction and identified high stress and unrestricted support at both sides of junction arch as its main causes.In this study,we also presented double-directional control bolt support technology for a large Y-type span intersection,applied to deep intersection engineering in the Jiahe Coal Mine,which has proved effective.
基金the financial support from the National Natural Science Foundation of China(12171405 and 11661074)the Program for New Century Excellent Talents in Fujian Province University+2 种基金the financial support from the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)Collaborative Innovation Center of Statistical Data Engineering Technology&ApplicationDigital+Discipline Construction Project(SZJ2022B004)。
文摘Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.
基金Supported by the Project of National Natural Science Foundation of China(52234002,42230814)。
文摘Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11702153,71571107,and 61773290)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY18A010003)the K.C.Wong Magna Fund in Ningbo University,China
文摘A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam. The stability of the model is analyzed by using the new control method. The advantage of the new model with and without the effect of double flux difference is explored by the numerical simulation. The numerical simulations demonstrate that the traffic jam can be alleviated by the control signal.