When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchr...When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.展开更多
The prominence of Renewable Energy Sources(RES)in the process of power generation is exponentially increased in the recent days since these sources assist in minimizing the environmental contamination.A grid-tied DFIG...The prominence of Renewable Energy Sources(RES)in the process of power generation is exponentially increased in the recent days since these sources assist in minimizing the environmental contamination.A grid-tied DFIG(Doubly Fed Induction Generator)based WECS(Wind Energy Conversion System)is introduced in this work,in which a Landsman converter is implemented to impro-vise the output voltage of PV without anyfluctuations.A novel GA(Genetic Algorithm)assisted ANN(Artificial Neural Network)is employed for tracking the Maximum power from PV.Among the rotor and grid side controllers,the for-mer is implemented by combining the statorflux with d-q reference frame and the latter is realized by the PI controller.The proposed approach delivers better per-formance in the compensation of real and reactive power along with the DC link voltage control.The controlling mechanism is verified in both MATLAB and experimental bench setupby using an emulated wind turbine for the concurrent control of DC link potential,active and reactive powers.The source current THD is observed as 1.93%and 2.4%for simulation and hardware implementation respectively.展开更多
The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects...The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects on the overall system operating characteristics and stability. The use of a stable power station (with high speed machines) will be critical in achieving fast and reliable transient response to network events, in particular, when large transient loads are expected on a continuous basis, i.e., industrial mining and mineral processing equipment. Simulation results of this paper assist in understanding how small power stations and wind generation equipment respond to large transients in an islanded network. In particular, detailed simulations and analyses will be presented on impacts of distributed wind generation units (1.5 MW DF1G) on the stability of a small weak network. The novelty of this paper is on detailed analyses and simulation of weak networks with interconnects DFIG's including their impacts on system stability under various transient operating conditions.展开更多
The grid connection of a large-scale wind farm could change the load flow/configuration of a power system and introduce dynamic interactions with the synchronous generators(SGs),thus affecting system small-signal angu...The grid connection of a large-scale wind farm could change the load flow/configuration of a power system and introduce dynamic interactions with the synchronous generators(SGs),thus affecting system small-signal angular stability.This paper proposes an approach for the separate examination of the impact of those affecting factors,i.e.,the change of load flow/configuration and dynamic interactions brought about by the grid connection of the wind farm,on power system smallsignal angular stability.Both cases of grid connection of the wind farm,either displacing synchronous generators or being directly added into the power system,are considered.By using the proposed approach,how much the effect of the change of load flow/configuration brought about by the wind farm can be examined,while the degree of impact of the dynamic interaction of the wind farm with the SGs can be investigated separately.Thus,a clearer picture and better understanding of the power system small-signal angular stability as affected by grid connection of the large-scale wind farm can be achieved.An example of the power system with grid connection of a wind farm is presented to demonstrate the proposed approach.展开更多
An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security regi...An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security region(PDSR) of a power system with double fed induction generators(DFIG) can be approximated by one or few hyper-planes in nodal power injection space, transient stability criterion for given configurations of pre-fault, fault-on and post-fault of a power system is to be expressed by certain expressions of linear combination of nodal injection vector and the transient stability probability(TSP) is further obtained with a much more simplified expression than the complex integral. Furthermore, considering uncertainties of nodal injection power including wind power and load, TSP is calculated analytically by Cornish-Fisher expansion, which can provide reliable evaluation results with high accuracy and much less computing time compared with Monte Carlo simulation. TSP and its visualization can further help operators and planners be aware of the degree of stability or instability and find critical components to monitor and reinforce. Test results on the New England 10-generators and 39-buses power system show the method's effectiveness and significance for probabilistic security assessment.展开更多
基金This work was supported by a grant from the science-technology program of China State Grid Corp“Research on the operation and control characteristics when the power sent out through series compensation from large new energy base”(No.52010116000S)。
文摘When wind farms,which is based on double fed induction generator(DFIG),are connected to the series compensation power system,the phenomenon of sub-synchronous oscillation(SSO)may occur.In order to study the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors,we used RT-LAB to establish a simulation model concerning wind power connected to series-compensation power system.This model take a wind power connected to series compensation power system in north China as prototype.All influence factors of wind power SSO are simulated and analyzed by using time domain analysis method.The simulation results show that the effects of wind speed,series compensation degree and proportional control coefficient of rotor side converter(RSC)are most obvious.
文摘The prominence of Renewable Energy Sources(RES)in the process of power generation is exponentially increased in the recent days since these sources assist in minimizing the environmental contamination.A grid-tied DFIG(Doubly Fed Induction Generator)based WECS(Wind Energy Conversion System)is introduced in this work,in which a Landsman converter is implemented to impro-vise the output voltage of PV without anyfluctuations.A novel GA(Genetic Algorithm)assisted ANN(Artificial Neural Network)is employed for tracking the Maximum power from PV.Among the rotor and grid side controllers,the for-mer is implemented by combining the statorflux with d-q reference frame and the latter is realized by the PI controller.The proposed approach delivers better per-formance in the compensation of real and reactive power along with the DC link voltage control.The controlling mechanism is verified in both MATLAB and experimental bench setupby using an emulated wind turbine for the concurrent control of DC link potential,active and reactive powers.The source current THD is observed as 1.93%and 2.4%for simulation and hardware implementation respectively.
文摘The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects on the overall system operating characteristics and stability. The use of a stable power station (with high speed machines) will be critical in achieving fast and reliable transient response to network events, in particular, when large transient loads are expected on a continuous basis, i.e., industrial mining and mineral processing equipment. Simulation results of this paper assist in understanding how small power stations and wind generation equipment respond to large transients in an islanded network. In particular, detailed simulations and analyses will be presented on impacts of distributed wind generation units (1.5 MW DF1G) on the stability of a small weak network. The novelty of this paper is on detailed analyses and simulation of weak networks with interconnects DFIG's including their impacts on system stability under various transient operating conditions.
基金supported by the National Basic Research Program of China (973 Program) (2012CB215204)the key project of the SKLAEPS and the international collaborative project jointly funded by the NSFC (51311122) Chinathe EPSRC,UK.
文摘The grid connection of a large-scale wind farm could change the load flow/configuration of a power system and introduce dynamic interactions with the synchronous generators(SGs),thus affecting system small-signal angular stability.This paper proposes an approach for the separate examination of the impact of those affecting factors,i.e.,the change of load flow/configuration and dynamic interactions brought about by the grid connection of the wind farm,on power system smallsignal angular stability.Both cases of grid connection of the wind farm,either displacing synchronous generators or being directly added into the power system,are considered.By using the proposed approach,how much the effect of the change of load flow/configuration brought about by the wind farm can be examined,while the degree of impact of the dynamic interaction of the wind farm with the SGs can be investigated separately.Thus,a clearer picture and better understanding of the power system small-signal angular stability as affected by grid connection of the large-scale wind farm can be achieved.An example of the power system with grid connection of a wind farm is presented to demonstrate the proposed approach.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB228204)the National Natural Science Foundation of China(Grant No.51407126)Tianjin Natural Science Foundation(Grant No.15JCQNJC07000)
文摘An analytical approach for probabilistic evaluation of transient stability of a power system incorporating a wind farm is presented in this study. Based on the fact that the boundary of practical dynamic security region(PDSR) of a power system with double fed induction generators(DFIG) can be approximated by one or few hyper-planes in nodal power injection space, transient stability criterion for given configurations of pre-fault, fault-on and post-fault of a power system is to be expressed by certain expressions of linear combination of nodal injection vector and the transient stability probability(TSP) is further obtained with a much more simplified expression than the complex integral. Furthermore, considering uncertainties of nodal injection power including wind power and load, TSP is calculated analytically by Cornish-Fisher expansion, which can provide reliable evaluation results with high accuracy and much less computing time compared with Monte Carlo simulation. TSP and its visualization can further help operators and planners be aware of the degree of stability or instability and find critical components to monitor and reinforce. Test results on the New England 10-generators and 39-buses power system show the method's effectiveness and significance for probabilistic security assessment.