Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matric...Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.展开更多
Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this c...Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this contradiction.We used relaxed static stability(RSS)to improve the maneuverability in hypersonic flight,and designed the stability augmentation system(SAS)to ensure the stability in subsonic flight.Therefore,the relationship between static stability and maneuverability was quantitatively analyzed in the first step,and the numerical value of RSS was obtained on the premise of good maneuverability.Secondly,the relationship between static stability and aerodynamic parameters was quantitatively analyzed.We properly adjusted aerodynamic parameters based on the quantitative relationship to achieve the specific static stability set in the first step,and therefore provided the engineering realization methods.The vehicle will be statically unstable in subsonic flight with the specific static stability.Lastly,SAS was needed to ensure the stability of the vehicle in subsonic flight.Simulation studies were conducted by comparing the linear SAS to the nonlinear SAS,and the results showed that the nonlinear dynamicinversion controller can synthesize with proportional-integrall-derivative(PID)controller robustly and stabilize the hypersonic vehicle.展开更多
我国现有风电场一般并入大电网末梢,对系统电压稳定有深刻影响。该文在分析双馈风机数学模型的基础上,通过Matlab电力系统分析软件PSAT搭建了包含双馈感应风电机组的New England 10机39节点系统,采用模态分析方法,研究了双馈感应风电机...我国现有风电场一般并入大电网末梢,对系统电压稳定有深刻影响。该文在分析双馈风机数学模型的基础上,通过Matlab电力系统分析软件PSAT搭建了包含双馈感应风电机组的New England 10机39节点系统,采用模态分析方法,研究了双馈感应风电机组在不同接入位置和不同电气距离情况下对电力系统静态电压稳定性的影响。仿真分析表明:双馈风电机组接入重负荷区域有助于提高系统的静态电压稳定性,接入薄弱区域会减弱系统的静态电压稳定性;接入电网的电气距离的增大会降低风电场及附近区域的静态电压稳定性。展开更多
文摘Aim To study the optimal guaranteed cost control problem via static output feedback for uncertain linear discrete time systems with norm bounded parameter uncertainty in both the state and the control input matrices of the state space model. Methods\ An upper bound on a quadratic cost index was found for all admissible parameter uncertainties and minimized by using Lagrange multiplier approach. Results and Conclusion\ Sufficient conditions are given for the existence of a controller guaranteeing the closed loop system quadratic stability and providing an optimized bound. A numerical algorithm for solving the output feedback gain is also presented.
基金supported in part by the National Natural Science Foundation of China(Nos.61673209,61741313)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXZZ13_0170)+3 种基金the Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ13-06)the Jiangsu Six Peak of Talents Program(No.KTHY-027)the Funding of China Launch Vehicle Technology Innovation Program of University and Institute(No.CALT201503)the Aeronautical Science Foundation(No.2016ZA52009)
文摘Since the aerodynamic center moving backward sharply in hypersonic flight,the stability margin of the hypersonic vehicle increases largely while the maneuverability decreases.We proposed a novel method to solve this contradiction.We used relaxed static stability(RSS)to improve the maneuverability in hypersonic flight,and designed the stability augmentation system(SAS)to ensure the stability in subsonic flight.Therefore,the relationship between static stability and maneuverability was quantitatively analyzed in the first step,and the numerical value of RSS was obtained on the premise of good maneuverability.Secondly,the relationship between static stability and aerodynamic parameters was quantitatively analyzed.We properly adjusted aerodynamic parameters based on the quantitative relationship to achieve the specific static stability set in the first step,and therefore provided the engineering realization methods.The vehicle will be statically unstable in subsonic flight with the specific static stability.Lastly,SAS was needed to ensure the stability of the vehicle in subsonic flight.Simulation studies were conducted by comparing the linear SAS to the nonlinear SAS,and the results showed that the nonlinear dynamicinversion controller can synthesize with proportional-integrall-derivative(PID)controller robustly and stabilize the hypersonic vehicle.
文摘我国现有风电场一般并入大电网末梢,对系统电压稳定有深刻影响。该文在分析双馈风机数学模型的基础上,通过Matlab电力系统分析软件PSAT搭建了包含双馈感应风电机组的New England 10机39节点系统,采用模态分析方法,研究了双馈感应风电机组在不同接入位置和不同电气距离情况下对电力系统静态电压稳定性的影响。仿真分析表明:双馈风电机组接入重负荷区域有助于提高系统的静态电压稳定性,接入薄弱区域会减弱系统的静态电压稳定性;接入电网的电气距离的增大会降低风电场及附近区域的静态电压稳定性。