The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative ana...The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.展开更多
Ornamental flowers commonly grown in ttrban gardens and parks can be of value to flower-visiting insects. However, there is huge variation in the number of insects attracted among plant varieties. In this study, we qu...Ornamental flowers commonly grown in ttrban gardens and parks can be of value to flower-visiting insects. However, there is huge variation in the number of insects attracted among plant varieties. In this study, we quantified the insect attractiveness of 79 varieties in full bloom being grown in a public urban garden that is popular due to its beautiful flowers and other attractions. The results showed very clearly that most varieties (77%, n = 61) were either poorly attractive or completely unattractive to insect flower visitors. Several varieties (19%, n = 15) were moderately attractive, but very few (4%, n = 3) were highly attractive. Closer examination of Dahlia varieties showed that "open" flowered forms were approximately 20 times more attractive than "closed" flowered forms. These results strongly suggest that there is a great potential for making urban parks and gardens considerably more bee- and insect-friendly by selecting appropriate varieties.展开更多
基金supported by funding from National Natural Science Foundation of China(Grant Nos.32002074 and 31872135)China Postdoctoral Science Foundation(Grant No.2021M693445)。
文摘The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.
文摘Ornamental flowers commonly grown in ttrban gardens and parks can be of value to flower-visiting insects. However, there is huge variation in the number of insects attracted among plant varieties. In this study, we quantified the insect attractiveness of 79 varieties in full bloom being grown in a public urban garden that is popular due to its beautiful flowers and other attractions. The results showed very clearly that most varieties (77%, n = 61) were either poorly attractive or completely unattractive to insect flower visitors. Several varieties (19%, n = 15) were moderately attractive, but very few (4%, n = 3) were highly attractive. Closer examination of Dahlia varieties showed that "open" flowered forms were approximately 20 times more attractive than "closed" flowered forms. These results strongly suggest that there is a great potential for making urban parks and gardens considerably more bee- and insect-friendly by selecting appropriate varieties.