By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulati...By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.展开更多
In this study,natural convection flow in a porous cavity with sinusoidal temperature distribution has been analyzed by a new double multi relaxation time(MRT)Lattice Boltzmann method(LBM).We consider a copper/water na...In this study,natural convection flow in a porous cavity with sinusoidal temperature distribution has been analyzed by a new double multi relaxation time(MRT)Lattice Boltzmann method(LBM).We consider a copper/water nanofluid filling a porous cavity.For simulating the temperature and flow fields,D2Q5 and D2Q9 lattices are utilized respectively,and the effects of different Darcy numbers(Da)(0.001-0.1)and various Rayleigh numbers(Ra)(10^(3)-10^(5))for porosity(ε)between 0.4 and 0.9 have been considered.Phase deviation(θ)changed from 0 toπand the volume fraction of nanoparticles(∅)varied from 0 to 6%.The present results show a good agreement with the previous works,thus confirming the reliability the new numerical method proposed in this paper.It is indicated that the heat transfer rate increases at increasing Darcy number,porosity,Rayleigh number,the volume fraction of nanoparticles and phase deviation.However,the most sensitive parameter is the Rayleigh number.The maximum Nusselt deviation is 10%,32%and 33%for Ra=10^(3),10^(4) and 10^(5),respectively,withε=0.4 toε=0.9.It can be concluded that the effect of Darcy number on the heat transfer rate increases at increasing Rayleigh number,yielding a maximum enhancement of the average Nusselt number around 12%and 61%for Ra=10^(3) and Ra=10^(5),respectively.展开更多
针对DBOC信号在正弦调频干扰(sinusoidal frequency modulation,SFM)和高动态共存环境下的捕获方法匮乏的问题,提出了一种基于正弦调频变换(discrete sinusoidal frequency modulation transform,DSFMT)结合离散多项式相位变换(discrete...针对DBOC信号在正弦调频干扰(sinusoidal frequency modulation,SFM)和高动态共存环境下的捕获方法匮乏的问题,提出了一种基于正弦调频变换(discrete sinusoidal frequency modulation transform,DSFMT)结合离散多项式相位变换(discrete polynomial-phase transform,DPT),线性调频Z变换(CZT)的捕获方法。首先对接收到的信号做DSFMT,接着确定干扰位置并置零再做IDSFMT完成SFM干扰的抑制,然后利用定阶算法确定干扰抑制后信号的动态阶数再通过DPT去除其高阶动态项,最后利用CZT算法完成信号的捕获。仿真结果表明,在相同条件下,本文算法的检测概率比DSFMT-apFFT算法提高大约17 dB,比PMF-apFFT算法提高大约30 dB,比PMF-FFT算法提高大约34 dB。展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51277146)the Foundation of Delta Science,Technologythe Education Development Program for Power Electronics (Grant No. DREG2011003)
文摘By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.
文摘In this study,natural convection flow in a porous cavity with sinusoidal temperature distribution has been analyzed by a new double multi relaxation time(MRT)Lattice Boltzmann method(LBM).We consider a copper/water nanofluid filling a porous cavity.For simulating the temperature and flow fields,D2Q5 and D2Q9 lattices are utilized respectively,and the effects of different Darcy numbers(Da)(0.001-0.1)and various Rayleigh numbers(Ra)(10^(3)-10^(5))for porosity(ε)between 0.4 and 0.9 have been considered.Phase deviation(θ)changed from 0 toπand the volume fraction of nanoparticles(∅)varied from 0 to 6%.The present results show a good agreement with the previous works,thus confirming the reliability the new numerical method proposed in this paper.It is indicated that the heat transfer rate increases at increasing Darcy number,porosity,Rayleigh number,the volume fraction of nanoparticles and phase deviation.However,the most sensitive parameter is the Rayleigh number.The maximum Nusselt deviation is 10%,32%and 33%for Ra=10^(3),10^(4) and 10^(5),respectively,withε=0.4 toε=0.9.It can be concluded that the effect of Darcy number on the heat transfer rate increases at increasing Rayleigh number,yielding a maximum enhancement of the average Nusselt number around 12%and 61%for Ra=10^(3) and Ra=10^(5),respectively.