In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optim...In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optimization challenge.The enormity of the dataset under consideration gives rise to substantial computational burdens,complex modeling,and high hardware requirements.This paper employs the Dual-Population Particle Swarm Optimization(DPSO)algorithm in variational data assimilation to enhance assimilation accuracy.By harnessing parallel computing principles,the paper introduces the Parallel Dual-Population Particle Swarm Optimization(PDPSO)Algorithm to reduce the algorithm processing time.Simulations were carried out using partial differential equations,and comparisons in terms of time and accuracy were made against DPSO,the Dynamic Weight Particle Swarm Algorithm(PSOCIWAC),and the TimeVarying Double Compression Factor Particle Swarm Algorithm(PSOTVCF).Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO.Regarding processing time,PDPSO is 40%faster than PSOCIWAC and PSOTVCF and 70%faster than DPSO.展开更多
Purpose-Multi-objective is a complex problem that appears in real life while these objectives are conflicting.The swarm intelligence algorithm is often used to solve such multi-objective problems.Due to its strong sea...Purpose-Multi-objective is a complex problem that appears in real life while these objectives are conflicting.The swarm intelligence algorithm is often used to solve such multi-objective problems.Due to its strong search ability and convergence ability,particle swarm optimization algorithm is proposed,and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems.However,the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence.Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm.Therefore,this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.Design/methodology/approach-In this paper,the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.Findings-In order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm,this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization.Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.Originality/value-In order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently,this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.展开更多
Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual o...Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual operating conditions. To solve these problems, this paper proposes an optimization method based on user Electricity Anxiety(EA) and Chaotic Space Variation Particle Swarm Optimization(CSVPSO). First, the load is divided into critical load, translation load, shiftable load, and temperature load. Then, on the basis of the different load characteristics,the concept of the user EA degree is presented, and the optimization model of the EI is provided. This paper also presents a CSVPSO algorithm to solve the optimization problem because the traditional particle swarm optimization algorithm takes a long time and particles easily fall into the local optimum. In CSVPSO, the particles with lower fitness value are operated by using cross operation, and velocity variation is performed for particles with a speed lower than the setting threshold. The effectiveness of the proposed method is verified by simulation analysis.Simulation results show that the proposed method can be used to optimize the operation of EI on the basis of the full consideration of the load characteristics. Moreover, the optimization algorithm has high accuracy and computational efficiency.展开更多
Some variational data assimilation (VDA) problems of time- and space-discrete models with on/off parameterizations can be regarded as non-smooth optimization problems. Same as the sub-gradient type method, intellige...Some variational data assimilation (VDA) problems of time- and space-discrete models with on/off parameterizations can be regarded as non-smooth optimization problems. Same as the sub-gradient type method, intelligent optimization algorithms, which are widely used in engineering optimization, can also be adopted in VDA in virtue of their no requirement of cost function's gradient (or sub-gradient) and their capability of global convergence. Two typical intelligent optimization algorithms, genetic algorithm (GA) and particle swarm optimization (PSO), are introduced to VDA of modified Lorenz equations with on-off parameterizations, then two VDA schemes are proposed, that is, GA based VDA (GA-VDA) and PSO based VDA (PSO-VDA). After revealing the advantage of GA and PSO over conventional adjoint methods in the ability of global searching at the existence of cost function's discontinuity induced by on-off switches, sensitivities of GA-VDA and PSO-VDA to population size, observational noise, model error and observational density are detailedly analyzed. It's shown that, in the context of modified Lorenz equations, with proper population size, GA-VDA and PSO-VDA can effectively estimate the global optimal solution, while PSO-VDA consumes much less computational time than GA-VDA with the same population size, and requires a much lower population size with nearly the same results, both methods are not very sensitive to observation noise and model error, while PSO-VDA shows a better performance with observational noise than GA-VDA. It is encouraging that both methods are not sensitive to observational density, especially PSO-VDA, using which almost the same perfect assimilation results can be obtained with comparatively sparse observations.展开更多
The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the ...The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the adoption of the improved PSO algorithm were solved and the results were analyzed. The results show that it is beneficial to obtaining the optimal solution by increasing the number of particles but that will also increase the operation time. On the aspects of solving continuous differentiable non-linear optimization model with equality and inequality constraints, the optimization result of PSO algorithm is the same as that of the interior point method. Compared with genetic algorithms (GA), PSO algorithm is more effective in the local optimization, and unlike GA, it will not be early maturity. Meanwhile, PSO algorithm is also more effective in the boundary optimization than genetic algorithm.展开更多
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.
基金Supported by Hubei Provincial Department of Education Teaching Research Project(2016294,2017320)Hubei Provincial Humanities and Social Science Research Project(17D033)+2 种基金College Students Innovation and Entrepreneurship Training Program(National)(20191050013)Hubei Province Natural Science Foundation General Project(2021CFB584)2023 College Student Innovation and Entrepreneurship Training Program Project(202310500047,202310500049)。
文摘In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optimization challenge.The enormity of the dataset under consideration gives rise to substantial computational burdens,complex modeling,and high hardware requirements.This paper employs the Dual-Population Particle Swarm Optimization(DPSO)algorithm in variational data assimilation to enhance assimilation accuracy.By harnessing parallel computing principles,the paper introduces the Parallel Dual-Population Particle Swarm Optimization(PDPSO)Algorithm to reduce the algorithm processing time.Simulations were carried out using partial differential equations,and comparisons in terms of time and accuracy were made against DPSO,the Dynamic Weight Particle Swarm Algorithm(PSOCIWAC),and the TimeVarying Double Compression Factor Particle Swarm Algorithm(PSOTVCF).Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO.Regarding processing time,PDPSO is 40%faster than PSOCIWAC and PSOTVCF and 70%faster than DPSO.
基金This work was supported by the Key Project of Science and Technology Innovation(2030)supported by the Ministry of Science and Technology of China(Grant No.2018AAA0101301)the Key Projects of Artificial Intelligence of High Schoolin Guangdong Province(No.2019KZDZX1011)+2 种基金Innovation Project of High School in Guangdong Province(No.2018KTSCX314)Dongguan Social Development Science and Technology Project(No.20211800904722)Dongguan Science and Technology Special Commissioner Project(No.20201800500442).
文摘Purpose-Multi-objective is a complex problem that appears in real life while these objectives are conflicting.The swarm intelligence algorithm is often used to solve such multi-objective problems.Due to its strong search ability and convergence ability,particle swarm optimization algorithm is proposed,and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems.However,the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence.Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm.Therefore,this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.Design/methodology/approach-In this paper,the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.Findings-In order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm,this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization.Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.Originality/value-In order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently,this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.
文摘Ignoring load characteristics and not considering user feeling with regard to the optimal operation of Energy Internet(EI) results in a large error in optimization. Thus, results are not consistent with the actual operating conditions. To solve these problems, this paper proposes an optimization method based on user Electricity Anxiety(EA) and Chaotic Space Variation Particle Swarm Optimization(CSVPSO). First, the load is divided into critical load, translation load, shiftable load, and temperature load. Then, on the basis of the different load characteristics,the concept of the user EA degree is presented, and the optimization model of the EI is provided. This paper also presents a CSVPSO algorithm to solve the optimization problem because the traditional particle swarm optimization algorithm takes a long time and particles easily fall into the local optimum. In CSVPSO, the particles with lower fitness value are operated by using cross operation, and velocity variation is performed for particles with a speed lower than the setting threshold. The effectiveness of the proposed method is verified by simulation analysis.Simulation results show that the proposed method can be used to optimize the operation of EI on the basis of the full consideration of the load characteristics. Moreover, the optimization algorithm has high accuracy and computational efficiency.
基金funded by the National Natural Science Foundation of China(Grant No.40830955)
文摘Some variational data assimilation (VDA) problems of time- and space-discrete models with on/off parameterizations can be regarded as non-smooth optimization problems. Same as the sub-gradient type method, intelligent optimization algorithms, which are widely used in engineering optimization, can also be adopted in VDA in virtue of their no requirement of cost function's gradient (or sub-gradient) and their capability of global convergence. Two typical intelligent optimization algorithms, genetic algorithm (GA) and particle swarm optimization (PSO), are introduced to VDA of modified Lorenz equations with on-off parameterizations, then two VDA schemes are proposed, that is, GA based VDA (GA-VDA) and PSO based VDA (PSO-VDA). After revealing the advantage of GA and PSO over conventional adjoint methods in the ability of global searching at the existence of cost function's discontinuity induced by on-off switches, sensitivities of GA-VDA and PSO-VDA to population size, observational noise, model error and observational density are detailedly analyzed. It's shown that, in the context of modified Lorenz equations, with proper population size, GA-VDA and PSO-VDA can effectively estimate the global optimal solution, while PSO-VDA consumes much less computational time than GA-VDA with the same population size, and requires a much lower population size with nearly the same results, both methods are not very sensitive to observation noise and model error, while PSO-VDA shows a better performance with observational noise than GA-VDA. It is encouraging that both methods are not sensitive to observational density, especially PSO-VDA, using which almost the same perfect assimilation results can be obtained with comparatively sparse observations.
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the adoption of the improved PSO algorithm were solved and the results were analyzed. The results show that it is beneficial to obtaining the optimal solution by increasing the number of particles but that will also increase the operation time. On the aspects of solving continuous differentiable non-linear optimization model with equality and inequality constraints, the optimization result of PSO algorithm is the same as that of the interior point method. Compared with genetic algorithms (GA), PSO algorithm is more effective in the local optimization, and unlike GA, it will not be early maturity. Meanwhile, PSO algorithm is also more effective in the boundary optimization than genetic algorithm.