Ocean bottom node(OBN)data acquisition is the main development direction of marine seismic exploration;it is widely promoted,especially in shallow sea environments.However,the OBN receivers may move several times beca...Ocean bottom node(OBN)data acquisition is the main development direction of marine seismic exploration;it is widely promoted,especially in shallow sea environments.However,the OBN receivers may move several times because they are easily affected by tides,currents,and other factors in the shallow sea environment during long-term acquisition.If uncorrected,then the imaging quality of subsequent processing will be affected.The conventional secondary positioning does not consider the case of multiple movements of the receivers,and the accuracy of secondary positioning is insufficient.The first arrival wave of OBN seismic data in shallow ocean mainly comprises refracted waves.In this study,a nonlinear model is established in accordance with the propagation mechanism of a refracted wave and its relationship with the time interval curve to realize the accurate location of multiple receiver movements.In addition,the Levenberg-Marquart algorithm is used to reduce the influence of the first arrival pickup error and to automatically detect the receiver movements,identifying the accurate dynamic relocation of the receivers.The simulation and field data show that the proposed method can realize the dynamic location of multiple receiver movements,thereby improving the accuracy of seismic imaging and achieving high practical value.展开更多
From August 21, 2000 to October 20, 2000,a fluid injection-induced seismicity experiment has been carried out in the KTB (German Continental Deep Drilling Program). The KTB seismic network recorded more than 2 700 eve...From August 21, 2000 to October 20, 2000,a fluid injection-induced seismicity experiment has been carried out in the KTB (German Continental Deep Drilling Program). The KTB seismic network recorded more than 2 700 events. Among them 237 events were of high signal-to-noise ratio, and were processed and accurately located. When the events were located, non KTB events were weeded out by Wadatis method. The standard deviation, mean and median were obtained by Jackknife's technique, and finally the events were accurately located by Gei-gers method so that the mean error is about 0.1 km. No earthquakes with focal depth greater than 9.3 km, which is nearly at the bottom of the hole, were detected. One of the explanation is that at such depths the stress levels may not close to the rocks frictional strength so that failure could not be induced by the relatively small perturbation in pore pressure. Or at these depths there may be no permeable, well-oriented faults. This depth may be in close proximity to the bottom of the hole to the brittle-ductile transition, even in this relatively stable interior of the in-teraplate. This phenomenon is explained by the experimental results and geothermal data from the superdeep bore-hole.展开更多
We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribut...We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribution of aftershocks reveals a set of earthquake faults: a WNW stretching fault truncates two NNE stretching faults. The two branches of faults show the conjugate structure which is often seen in brittle fracture. The NNE stretching faults are connected together. The Luanhe river valley near Lulong developed to a rudiment rift basin surrounded by a series of faults. The fault of Lulong earthquake is a strike-slip fault with tension component. This fault type matches with the activity of Zhangjiakou-Bohai seismic belt (Zhang-Bo belt) and also shows the action of Zhang-Bo belt as a boundary of two secondary active blocks that truncates the NNE fault.展开更多
Distributed testing system has strong applicability in the field of dynamic testing,which can centrally manage the testing equipment in different locations through the local area network,and meet the new requirements ...Distributed testing system has strong applicability in the field of dynamic testing,which can centrally manage the testing equipment in different locations through the local area network,and meet the new requirements of the test.Based on the theory of seismic location,the location of underground explosion center was studied.The applicability of seismic location theory to the location of underground explosion center was verified by simulating the underground explosion with LS-DYNA simulation platform.Combined with distributed testing system theory and weighting method,the optimal distribution method of test points was summarized through data analysis.展开更多
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftersh...Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning'er M6. 4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40kin and the width is 30km, concentrated obviously at the lateral displacement area between the Pu'er fault and the NNE-trending faults, with the majority occurring on the Pu'er fault around the main shock. The depths of aftershocks are from 2kin to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7. 9kin. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu'er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu'er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.展开更多
The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake locat...The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.展开更多
基金funded by the National Natural Science Foundation of China (No.42074140)the Scientific Research and Technology Development Project of China National Petroleum Corporation (No.2021ZG02)。
文摘Ocean bottom node(OBN)data acquisition is the main development direction of marine seismic exploration;it is widely promoted,especially in shallow sea environments.However,the OBN receivers may move several times because they are easily affected by tides,currents,and other factors in the shallow sea environment during long-term acquisition.If uncorrected,then the imaging quality of subsequent processing will be affected.The conventional secondary positioning does not consider the case of multiple movements of the receivers,and the accuracy of secondary positioning is insufficient.The first arrival wave of OBN seismic data in shallow ocean mainly comprises refracted waves.In this study,a nonlinear model is established in accordance with the propagation mechanism of a refracted wave and its relationship with the time interval curve to realize the accurate location of multiple receiver movements.In addition,the Levenberg-Marquart algorithm is used to reduce the influence of the first arrival pickup error and to automatically detect the receiver movements,identifying the accurate dynamic relocation of the receivers.The simulation and field data show that the proposed method can realize the dynamic location of multiple receiver movements,thereby improving the accuracy of seismic imaging and achieving high practical value.
文摘From August 21, 2000 to October 20, 2000,a fluid injection-induced seismicity experiment has been carried out in the KTB (German Continental Deep Drilling Program). The KTB seismic network recorded more than 2 700 events. Among them 237 events were of high signal-to-noise ratio, and were processed and accurately located. When the events were located, non KTB events were weeded out by Wadatis method. The standard deviation, mean and median were obtained by Jackknife's technique, and finally the events were accurately located by Gei-gers method so that the mean error is about 0.1 km. No earthquakes with focal depth greater than 9.3 km, which is nearly at the bottom of the hole, were detected. One of the explanation is that at such depths the stress levels may not close to the rocks frictional strength so that failure could not be induced by the relatively small perturbation in pore pressure. Or at these depths there may be no permeable, well-oriented faults. This depth may be in close proximity to the bottom of the hole to the brittle-ductile transition, even in this relatively stable interior of the in-teraplate. This phenomenon is explained by the experimental results and geothermal data from the superdeep bore-hole.
基金National Natural Science Foundation of China (40234038).
文摘We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribution of aftershocks reveals a set of earthquake faults: a WNW stretching fault truncates two NNE stretching faults. The two branches of faults show the conjugate structure which is often seen in brittle fracture. The NNE stretching faults are connected together. The Luanhe river valley near Lulong developed to a rudiment rift basin surrounded by a series of faults. The fault of Lulong earthquake is a strike-slip fault with tension component. This fault type matches with the activity of Zhangjiakou-Bohai seismic belt (Zhang-Bo belt) and also shows the action of Zhang-Bo belt as a boundary of two secondary active blocks that truncates the NNE fault.
基金Open Research Fund for Key Laboratory of Damage Technology(No.DXMBJJ2017-12)。
文摘Distributed testing system has strong applicability in the field of dynamic testing,which can centrally manage the testing equipment in different locations through the local area network,and meet the new requirements of the test.Based on the theory of seismic location,the location of underground explosion center was studied.The applicability of seismic location theory to the location of underground explosion center was verified by simulating the underground explosion with LS-DYNA simulation platform.Combined with distributed testing system theory and weighting method,the optimal distribution method of test points was summarized through data analysis.
基金sponsored by the Joint Earthquake Science Foundation,China (200804)
文摘Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning'er M6. 4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40kin and the width is 30km, concentrated obviously at the lateral displacement area between the Pu'er fault and the NNE-trending faults, with the majority occurring on the Pu'er fault around the main shock. The depths of aftershocks are from 2kin to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7. 9kin. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu'er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu'er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.
基金This project was sponsored by the National Programon KeyBasic Research Projects (2004CB418406) ,the Programfor the Tenth"Five-Year Plan"of China (2004BA601B01-04-03) andthe Joint Earthquake Science Foundation of China (606042) .
文摘The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.