Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re...Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.展开更多
A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered de...A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.展开更多
The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the ...The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the hilly terrain.In this approach,a new three-dimensional model of hilly terrain is established to analyze its viscous effect,and a wind shear is modelled through logarithmic function.They are coupled into the aerodynamics of wind turbine based on“FLUENT”software.Then we apply the proposed method to the NREL Phase VI wind turbines and compare with an experiment in the atmospheric boundary layer(ABL)wind tunnel to validate its accuracy.The simulation also investigates the power outputs of wind turbines on the flat ground and the continuous hilly terrain by changing the location of the wind turbine related to the hilly terrain and the shape of the 1st hill.The results show that the wind turbine located on the top of the 2nd hill has the maximum power;and that when the wind turbine is located on the downstream of the hill,the stall zone should be avoided,and the power of the wind turbine located on the side of the hill is higher than that of the wind turbine located on the front and rear of the hilly terrain.展开更多
Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of off...Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.展开更多
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k...The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.展开更多
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in ...In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades.展开更多
基金Financial supports for this research were provided by the National Natural Science Foundation of China(Grants 11372060,11672057 and 11711530018)the 111 Project(Grant B14013)the Program of BK21 Plus.These supports are gratefully acknowledged.
文摘Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.
基金Supported by National Key R&D Program of China (Grant No.2018YFB2000702)National Natural Science Foundation of China (Grant No.52075262)Fok Ying-Tong Education Foundation of China (Grant No.171044)。
文摘A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.
基金supported by the Natural Science Foundation of Jiangsu Province (No. BK20161537)National Science Key Laboratory Foundation(No.6142220180202)+1 种基金Rotor Aerodynamics Key Laboratory Foundation (No.RAL20180303-1)National Natural Science Foundation of China(No.11502105).
文摘The location of wind turbines on a continuous hilly terrain has an influence on its power outputs.A CFDbased approach is developed to investigate the complex aerodynamic interference between two wind turbines and the hilly terrain.In this approach,a new three-dimensional model of hilly terrain is established to analyze its viscous effect,and a wind shear is modelled through logarithmic function.They are coupled into the aerodynamics of wind turbine based on“FLUENT”software.Then we apply the proposed method to the NREL Phase VI wind turbines and compare with an experiment in the atmospheric boundary layer(ABL)wind tunnel to validate its accuracy.The simulation also investigates the power outputs of wind turbines on the flat ground and the continuous hilly terrain by changing the location of the wind turbine related to the hilly terrain and the shape of the 1st hill.The results show that the wind turbine located on the top of the 2nd hill has the maximum power;and that when the wind turbine is located on the downstream of the hill,the stall zone should be avoided,and the power of the wind turbine located on the side of the hill is higher than that of the wind turbine located on the front and rear of the hilly terrain.
文摘Gearbox in offshore wind turbines is a component with the highest failure rates during operation. Analysis of gearbox repair policy that includes economic considerations is important for the effective operation of offshore wind farms. From their initial perfect working states, gearboxes degrade with time, which leads to decreased working efficiency. Thus, offshore wind turbine gearboxes can be considered to be multi-state systems with the various levels of productivity for different working states. To efficiently compute the time-dependent distribution of this multi-state system and analyze its reliability, application of the nonhomogeneous continuous-time Markov process(NHCTMP) is appropriate for this type of object. To determine the relationship between operation time and maintenance cost, many factors must be taken into account, including maintenance processes and vessel requirements. Finally, an optimal repair policy can be formulated based on this relationship.
基金the National Science Foundation for funding the project work of Megan Hinzman and Samuel Smock in summer 2011Hannah K.Ross and John Cooney in summer 2012 through the Research Experience for Undergraduates(REU)Program,grant number AGS1005265the Alaska Department of Labor for funding Dr.Gary Sellhorst’s project work
文摘The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.
文摘In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sørensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades.