The performance of classic Mel-frequency cepstral coefficients (MFCC) is unsatisfactory in noisy environment with different sound sources from nature. In this paper, a classification approach of the ecological environ...The performance of classic Mel-frequency cepstral coefficients (MFCC) is unsatisfactory in noisy environment with different sound sources from nature. In this paper, a classification approach of the ecological environmental sounds using the double-level energy detection (DED) was presented. The DED was used to detect the existence of the sound signals under noise conditions. In addition, MFCC features from the frames which were detected the presence of the sound signals by DED were extracted. Experimental results show that the proposed technology has better noise immunity than classic MFCC, and also outperforms time-domain energy detection (TED) and frequency-domain energy detection (FED) respectively.展开更多
With the development of current energy economy,it is necessary to improve the product distribution of fluid catalytic cracking process,which is achieved by a riser reactor with double-level of nozzles.The new riser is...With the development of current energy economy,it is necessary to improve the product distribution of fluid catalytic cracking process,which is achieved by a riser reactor with double-level of nozzles.The new riser is constructed by adding a level of secondary nozzle 0.5 m below the main nozzle of traditional riser.This paper investigates the gas-solids flow and oil-catalyst matching feature based on the optical fiber and tracer technologies.According to the distribution of solids holdup,particle velocity and dimen-sionless jet concentration,the feedstock injection zone can be divided into the upstream flow control region,the main flow control region,and the secondary flow control region in the radial direction.The size of the regions is changed by the jet gas velocity and axial height.There is a poor match of secondary nozzle jet to particles below the main nozzle.The jet gas from secondary nozzles can improve the matching effect of oil-catalyst near the wall and reduce the probability of coking above the main nozzle.展开更多
文摘The performance of classic Mel-frequency cepstral coefficients (MFCC) is unsatisfactory in noisy environment with different sound sources from nature. In this paper, a classification approach of the ecological environmental sounds using the double-level energy detection (DED) was presented. The DED was used to detect the existence of the sound signals under noise conditions. In addition, MFCC features from the frames which were detected the presence of the sound signals by DED were extracted. Experimental results show that the proposed technology has better noise immunity than classic MFCC, and also outperforms time-domain energy detection (TED) and frequency-domain energy detection (FED) respectively.
基金supports from the National Natural Science Foundation of China(Grant Nos.U1862202,21706280)the Foundation for Innovation Research Groups of National Natural Science Foundation of China(Grant No.22021004).
文摘With the development of current energy economy,it is necessary to improve the product distribution of fluid catalytic cracking process,which is achieved by a riser reactor with double-level of nozzles.The new riser is constructed by adding a level of secondary nozzle 0.5 m below the main nozzle of traditional riser.This paper investigates the gas-solids flow and oil-catalyst matching feature based on the optical fiber and tracer technologies.According to the distribution of solids holdup,particle velocity and dimen-sionless jet concentration,the feedstock injection zone can be divided into the upstream flow control region,the main flow control region,and the secondary flow control region in the radial direction.The size of the regions is changed by the jet gas velocity and axial height.There is a poor match of secondary nozzle jet to particles below the main nozzle.The jet gas from secondary nozzles can improve the matching effect of oil-catalyst near the wall and reduce the probability of coking above the main nozzle.