Flexible hinges are widely used in micro motion robotics. Its rigidity directly influences an organization's terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completel...Flexible hinges are widely used in micro motion robotics. Its rigidity directly influences an organization's terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper, we analyzed the rotation rigidity of a corner-filleted straight beam flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical results. Through the graph of the flexible hinge parameters and its performance, an analysis of changes of parameters on the performance of a corner-filleted flexible hinge was carried out. The key manufacture parameters that affect the performance of a corner-filleted flexure hinge the most and rules of design are given, which can provide directions of design precision for the flexure hinge.展开更多
A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspac...A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications.展开更多
文摘Flexible hinges are widely used in micro motion robotics. Its rigidity directly influences an organization's terminal localization. Its actual structure geometry size cannot satisfy the theoretical analysis completely in a theoretical supposition condition. In this paper, we analyzed the rotation rigidity of a corner-filleted straight beam flexible hinge in different parameters using finite element software ANSYS. The errors are discovered and compared with theoretical results. Through the graph of the flexible hinge parameters and its performance, an analysis of changes of parameters on the performance of a corner-filleted flexible hinge was carried out. The key manufacture parameters that affect the performance of a corner-filleted flexure hinge the most and rules of design are given, which can provide directions of design precision for the flexure hinge.
基金Project(2002AA422260) supported by the National High Technology Research and Development Program of ChinaProject(2011-6) supported by CAST-HIT Joint Program,ChinaProject supported by Harbin Institute of Technology (HIT) Overseas Talents Introduction Program,China
文摘A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications.