Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti...Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.展开更多
Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important...Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.展开更多
The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method ...The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method of curve curvature radius are discussed.A new method of sealing surface deformation is proposed based on the requirements of shoulder torque recognition.The calculation method and principle of PW value are elucidated and the advantages of this method are summarized.The proposed method considers the difference value of tightening torque and calculates the elastic deformation of the sealing surface,accurately reflecting the state of the thread compound and the correlation between torque change and elastic deformation of the sealing surface after compression.展开更多
Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference ...Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.展开更多
Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those e...Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.展开更多
The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound c...The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.展开更多
This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the c...This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.展开更多
Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems,we derive the effective Schr?dinger equation describing the particle constra...Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems,we derive the effective Schr?dinger equation describing the particle constrained within a curved layer,accompanied by a general geometric potential V_(gq) composed of a compression-corrected geometric potential V_(gq)~*and a novel potential V_(gq)~(**) brought by the deviation.Applying this analysis to the cylindrical layer emerges two types of deviation-induced geometric potential,resulting from the the cases of slant deviation and tangent deviation,respectively,which strongly renormalizes the purely geometric potential and contribute to the energy spectrum based on a very substantial deepening of bound states they offer.展开更多
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted m...We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.展开更多
This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering the...This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.展开更多
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ...When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.展开更多
This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge struct...This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge structure.The purpose of this paper is to provide robust support for enhancing the design quality of these bridges and ensuring their efficacy in real-world applications.展开更多
An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit e...The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data.Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data.Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.展开更多
In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimizati...In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.展开更多
Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper...Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper. The authors put forward the modified ultimate resistance formulas on the basis of which the ultimate resistance formula is developed for horizontally loaded pile in multi-layer soil in consideration of the effect of the overburden soil pressure on the calculation of soil layer. It is significant to the correct application of the ultimate resistance formulas in API and ZCS Rules into offshore engineering.展开更多
The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration charact...The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
基金WJD,JYZ,CLC,ZX,and ZGY were supported by the National Natural Science Foundation of China(Grant Number 51705143)the Education Department of Hunan Province(Grant Number 22B0464)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Number QL20230249).
文摘Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.
文摘Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.
文摘The meaning of each part of the screw-on curve,the definition of shoulder torque,and the common characteristics of the screw-on curve are introduced.Moreover,the principle and shortcomings of the commonly used method of curve curvature radius are discussed.A new method of sealing surface deformation is proposed based on the requirements of shoulder torque recognition.The calculation method and principle of PW value are elucidated and the advantages of this method are summarized.The proposed method considers the difference value of tightening torque and calculates the elastic deformation of the sealing surface,accurately reflecting the state of the thread compound and the correlation between torque change and elastic deformation of the sealing surface after compression.
文摘Background: The signal-to-noise ratio (SNR) is recognized as an index of measurements reproducibility. We derive the maximum likelihood estimators of SNR and discuss confidence interval construction on the difference between two correlated SNRs when the readings are from bivariate normal and bivariate lognormal distribution. We use the Pearsons system of curves to approximate the difference between the two estimates and use the bootstrap methods to validate the approximate distributions of the statistic of interest. Methods: The paper uses the delta method to find the first four central moments, and hence the skewness and kurtosis which are important in the determination of the parameters of the Pearsons distribution. Results: The approach is illustrated in two examples;one from veterinary microbiology and food safety data and the other on data from clinical medicine. We derived the four central moments of the target statistics, together with the bootstrap method to evaluate the parameters of Pearsons distribution. The fitted Pearsons curves of Types I and II were recommended based on the available data. The R-codes are also provided to be readily used by the readers.
基金Item Sponsored by National Natural Science Foundation of China(50271009)
文摘Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.
文摘The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.
文摘This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.
基金Project jointly supported by the National Natural Science Foundation of China(Grant No.11934008)funded by the Fund from National Laboratory of Solid State Microstructure of Nanjing University(Grant Nos.M35040 and M35053)the Youth Independent Innovation Fund(Grant No.KYJBJKQTZQ23006)。
文摘Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems,we derive the effective Schr?dinger equation describing the particle constrained within a curved layer,accompanied by a general geometric potential V_(gq) composed of a compression-corrected geometric potential V_(gq)~*and a novel potential V_(gq)~(**) brought by the deviation.Applying this analysis to the cylindrical layer emerges two types of deviation-induced geometric potential,resulting from the the cases of slant deviation and tangent deviation,respectively,which strongly renormalizes the purely geometric potential and contribute to the energy spectrum based on a very substantial deepening of bound states they offer.
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
基金Supported by the National Natural Science Foundation of China under Grant No 11447148
文摘We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.
文摘This study explores the 2D stretching flow of a hybrid nanofluid over a curved surface influenced by a magnetic field and reactions. A steady laminar flow model is created with curvilinear coordinates, considering thermal radiation, suction, and magnetic boundary conditions. The nanofluid is made of water with copper and MWCNTs as nanoparticles. The equations are transformed into nonlinear ODEs and solved numerically. The model’s accuracy is confirmed by comparing it with published data. Results show that fluid velocity increases, temperature decreases, and concentration increases with the curvature radius parameter. The hybrid nanofluid is more sensitive to magnetic field changes in velocity, while the nanofluid is more sensitive to magnetic boundary coefficient changes. These insights can optimize heat and mass transfer in industrial processes like chemical reactors and wastewater treatment.
文摘When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed.
文摘This article explores the fundamentals of small-radius curved ramp bridges.It covers the selection of box girder spans,support methods,and forms,along with design optimization techniques for this type of bridge structure.The purpose of this paper is to provide robust support for enhancing the design quality of these bridges and ensuring their efficacy in real-world applications.
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
文摘The forming limit curve (FLC) can be obtained by means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data.Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data.Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.
基金Thanks for the reviewers’comments to improve the paper.This research was supported by the National Nature Science Foundation of China under Grant Nos.61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LR16F020003,LQ16F020005.
文摘In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.
文摘Based on the Mohr-Coulomb failure principle and Rankine's theory, the laterally loaded pile ultimate resistance formulas of sand and soft clay proposed by Reese and Matlock respectively are discussed in this paper. The authors put forward the modified ultimate resistance formulas on the basis of which the ultimate resistance formula is developed for horizontally loaded pile in multi-layer soil in consideration of the effect of the overburden soil pressure on the calculation of soil layer. It is significant to the correct application of the ultimate resistance formulas in API and ZCS Rules into offshore engineering.
基金supported by the National Natural Science Foundation of China(No.51805341)the Natural Science Foundation of Jiangsu Province(No.BK20180843).
文摘The doubly curved shell(DCS)is a common structure in the engineering field.In a thermal environment,the vibration characteristics of the DCS will be affected by the thermal effect.The research on the vibration characteristics of DCS in thermal environment is relatively limited.In this paper,the thermal strain and the change of Young’s modulus caused by the changing of temperature are studied,and the DCS energy equation is established systematically.The displacement tolerance function of the DCS is constructed by the spectral geometry method,and the natural frequencies and mode shapes of the DCS with different structural parameters,such as thicknesses,ratios of R_(a)/R_(b) and a/b,at different temperatures are solved by the Rayleigh-Ritz method.The results show that the natural frequency of the DCS decreases with the increasing temperature,R_(a)/R_(b) and a/b ratios,and increases with the increasing thickness.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.