The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with t...The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method (DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically, the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.展开更多
Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual...Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time,the quantity of heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat exchanger is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.展开更多
The purpose of this experiment is to analyze the performance of the Laminar Heat Pipe Heat Exchanger. The test samples were divided two groups, one is the metal corrugated sheet with heat pipe, and the other is the me...The purpose of this experiment is to analyze the performance of the Laminar Heat Pipe Heat Exchanger. The test samples were divided two groups, one is the metal corrugated sheet with heat pipe, and the other is the metal corrugated sheet only. By dipping these two group samples into hot water and to see the thermal image by Infrared thermal imager. The results shown the temperature risen of the sheet with heat pipe was faster than that of the sheet without heat pipe. In addition, the bigger of the temperature difference between hot water temperature and ambient temperature, the quicker of the temperature risen for the metal corrugated sheet, and the temperature of the metal corrugated sheet were homogenous as well. For example, when the water temperature is 30℃, ambient temperature is 20℃, the metal corrugated sheet with heat pipe rise rapidly to 26℃ within 1 minute, while the metal corrugated sheet without heat pipe rise to 22℃ only, this temperature difference would be more obvious with the increasing of the hot water temperature. When the hot water temperature is up to 40℃, the metal corrugated sheet with heat pipe rise rapidly to 31℃ within 1 minute, while the metal corrugated sheet without het pipe is still rise up to 22℃ only. When the hot water temperature is up to 50℃, The metal corrugated sheet with heat pipe rise rapidly to 33℃ within 1 minute, while the sheet without heat pipe still keep at 22℃, the results shown the heat pipe affect the temperature rising speed is obvious, and it also implying heat pipe is a very important parameter for the heat transfer rate of the Laminar Heat Pipe Heat Exchanger.展开更多
When gas flows through corrugated pipes,pressure waves interacting with vortex shedding can produce distinct tonal noise and structural vibration.Based on established observations,a model is proposed which couples an ...When gas flows through corrugated pipes,pressure waves interacting with vortex shedding can produce distinct tonal noise and structural vibration.Based on established observations,a model is proposed which couples an acoustic pipe and selfexcited oscillations with vortex shedding over the corrugation cavities.In the model,the acoustic response of the corrugated pipe is simulated by connecting the lossless medium moving with a constant velocity with a source based on a discrete distribution of van der Pol oscillators arranged along the pipe.Our time accurate solutions exhibit dynamic behavior consistent with that experimentally observed,including the lock-in frequency of vortex shedding,standing waves and the onset fluid velocity capable of generating the lock-in.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11872044,11702192,and 11672187)the National Key Research and Development Program of China(No.2018YFB0106200)
文摘The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method (DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically, the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.
基金Supported by Jilin Significant Tranformation Project of Science and Techrological Achievements[(2009)17]
文摘Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time,the quantity of heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat exchanger is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.
文摘The purpose of this experiment is to analyze the performance of the Laminar Heat Pipe Heat Exchanger. The test samples were divided two groups, one is the metal corrugated sheet with heat pipe, and the other is the metal corrugated sheet only. By dipping these two group samples into hot water and to see the thermal image by Infrared thermal imager. The results shown the temperature risen of the sheet with heat pipe was faster than that of the sheet without heat pipe. In addition, the bigger of the temperature difference between hot water temperature and ambient temperature, the quicker of the temperature risen for the metal corrugated sheet, and the temperature of the metal corrugated sheet were homogenous as well. For example, when the water temperature is 30℃, ambient temperature is 20℃, the metal corrugated sheet with heat pipe rise rapidly to 26℃ within 1 minute, while the metal corrugated sheet without heat pipe rise to 22℃ only, this temperature difference would be more obvious with the increasing of the hot water temperature. When the hot water temperature is up to 40℃, the metal corrugated sheet with heat pipe rise rapidly to 31℃ within 1 minute, while the metal corrugated sheet without het pipe is still rise up to 22℃ only. When the hot water temperature is up to 50℃, The metal corrugated sheet with heat pipe rise rapidly to 33℃ within 1 minute, while the sheet without heat pipe still keep at 22℃, the results shown the heat pipe affect the temperature rising speed is obvious, and it also implying heat pipe is a very important parameter for the heat transfer rate of the Laminar Heat Pipe Heat Exchanger.
文摘When gas flows through corrugated pipes,pressure waves interacting with vortex shedding can produce distinct tonal noise and structural vibration.Based on established observations,a model is proposed which couples an acoustic pipe and selfexcited oscillations with vortex shedding over the corrugation cavities.In the model,the acoustic response of the corrugated pipe is simulated by connecting the lossless medium moving with a constant velocity with a source based on a discrete distribution of van der Pol oscillators arranged along the pipe.Our time accurate solutions exhibit dynamic behavior consistent with that experimentally observed,including the lock-in frequency of vortex shedding,standing waves and the onset fluid velocity capable of generating the lock-in.