期刊文献+
共找到3,261篇文章
< 1 2 164 >
每页显示 20 50 100
Analytical Model and Topology Optimization of Doubly-fed Induction Generator
1
作者 Lu Sun Haoyu Kang +4 位作者 Jin Wang Zequan Li Jianjun Liu Yiming Ma Libing Zhou 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期162-169,共8页
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ... As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method. 展开更多
关键词 doubly-fed induction generators Accurate subdomain model Surrogate-assisted Transfer learning
下载PDF
Modeling and small-signal stability analysis of doubly-fed induction generator integrated system 被引量:1
2
作者 Tianming Gu Puyu Wang +3 位作者 Dingyuan Liu Ao Sun Dejian Yang Gangui Yan 《Global Energy Interconnection》 EI CSCD 2023年第4期438-449,共12页
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w... Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC. 展开更多
关键词 doubly-fed induction generator(DFIG) Maximum power point tracking DICHOTOMY Small-signal stability
下载PDF
Robust Position Observer for Sensorless Direct Voltage Control of Stand-Alone Ship Shaft Brushless Doubly-Fed Induction Generators 被引量:4
3
作者 Mohamed G.Hussien Yi Liu Wei Xu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第4期363-376,共14页
The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position obser... The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes. 展开更多
关键词 Brushless doubly-fed induction generator(BDFIG) direct voltage control(DVC) PW voltage-oriented vector control rotor position observer ship shaft applications.
下载PDF
A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support
4
作者 沈阳武 柯德平 +3 位作者 孙元章 Daniel Kirschen 王轶申 胡元朝 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期52-63,共12页
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt... A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. 展开更多
关键词 doubly-fed induction generator transient rotor current control superconducting magnetic energy storage voltage support
下载PDF
Step-Loading Characteristics of Gas Engine Cogeneration System Using Doubly-Fed Induction Generator in Stand-Alone Operation
5
作者 Tetsuji Daido Yushi Miura +1 位作者 Toshifumi Ise Yuki Sato 《Journal of Energy and Power Engineering》 2014年第3期530-542,共13页
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp... Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading. 展开更多
关键词 Step load change doubly-fed induction generator gas engine cogeneration system stand-alone operation.
下载PDF
Effects of Wind Turbines Equipped with Doubly-fed Induction Generators on Distance Protection 被引量:1
6
作者 Hossein Kazemi KAREGAR Maryam KHODDAM 《电力系统自动化》 EI CSCD 北大核心 2012年第8期128-131,共4页
Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipp... Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied. 展开更多
关键词 距离保护 双馈异步发电机 风力发电机组 配备 可再生能源资源 双馈感应发电机 距离继电器 同步发电机
下载PDF
A Novel Grid Synchronization Control of Doubly-fed Induction Generator
7
作者 ZHAN Liang-yu JIN Xin-min ZHANG Lu 《电力电子技术》 CSCD 北大核心 2012年第4期38-42,共5页
The dynamic performance of doubly-fed induction generator(DFIG) before and after connection is analyzed based on corresponding mathematical models and transfer functions in decoupled vector control.The parameter tunin... The dynamic performance of doubly-fed induction generator(DFIG) before and after connection is analyzed based on corresponding mathematical models and transfer functions in decoupled vector control.The parameter tuning methods of rotor current regulator before and after connection are given.To reach same dynamic performance the parameters should take different values and be switched before and after connection.However on one hand the closing moment of stator contactor is difficult to get as the feedback signal is usually twenty millisecond delay or so.The delay in parameter switching will affect rotor current and torque dynamics during the delayed period after connection. On the other hand parameter switching is troublesome.Hence a synchronization control strategy without parameter switching is proposed and analyzed in detail,which has linear rising exciting current to avoid current overshooting. The dynamic performance of the proposed strategy is analyzed in frequency domain and implemented on a DFIG experimental platform subsequently.The proposed synchronization strategy is validated by experimental results. 展开更多
关键词 摘要 编辑部 编辑工作 读者
下载PDF
Dual-negative-objective Coordinated Control of Brushless Doubly Fed Induction Generator under Unbalanced Grid Voltage
8
作者 Ming Cheng Zheng Cao Xiaoming Yan 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期347-355,共9页
This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechani... This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype. 展开更多
关键词 Brushless doubly fed induction generator Dual-negative-objective Freedom degree Unbalanced grid voltage
下载PDF
Application of fuzzy logic control algorithm as stator power controller of a grid-connected doubly-fed induction generator 被引量:1
9
作者 Ridha CHEIKH Arezki MENACER +1 位作者 Said DRID Mourad TIAR 《Frontiers in Energy》 SCIE CSCD 2013年第1期49-55,共7页
This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT conve... This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers (Ps, Qs) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity. 展开更多
关键词 doubly-fed induction generator (DFIG) vector control fuzzy logic controller optimization power factor unity active and reactive power
原文传递
Doubly-fed induction generator drive based WECS using fuzzy logic controller 被引量:1
10
作者 Abdelhak DIDA Djilani BEN ATTOUS 《Frontiers in Energy》 SCIE CSCD 2015年第3期272-281,共10页
The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The cont... The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment. 展开更多
关键词 fuzzy logic wind turbine vector control doubly-fed induction generator (DFIG)
原文传递
Modern Control Strategies of Doubly-Fed Induction Generator Based Wind Turbine System 被引量:2
11
作者 Dao Zhou Yipeng Song Frede Blaabjerg 《Chinese Journal of Electrical Engineering》 2016年第1期13-23,共11页
A doubly-fed induction generator(DFIG)based configuration is still preferred by wind turbine manufacturers due to the cost-effective power converter and independent control of the active power and reactive power.To co... A doubly-fed induction generator(DFIG)based configuration is still preferred by wind turbine manufacturers due to the cost-effective power converter and independent control of the active power and reactive power.To cope with stricter grid codes(e.g.reactive power compensation,low voltage ride-through operation,as well as steady and safe operation during long-term distorted grid),control strategies are continuously evolving.This paper starts with a control strategy using the combined reactive power compensation from both the back-to-back power converters for their optimized lifetime distribution under normal grid conditions.Afterwards,an advanced demagnetizing control is proposed to keep the minimum thermal stress of the rotor-side converter in the case of the short-term grid fault.A modularized control strategy of the DFIG system under unbalanced and distorted grid voltage is discussed,with the control targets of the smooth active and reactive power or the balanced and sinusoidal current of the rotor-side converter and the grid-side converte。Finally,a bandwidth based repetitive controller is evaluated to improve the DFIG system's robustness against grid frequency deviation. 展开更多
关键词 doubly-fed induction generator reactive power low voltage ride-through unbalanced and distorted grid.
原文传递
A novel control strategy of a variable-speed doubly-fed-induction-generator-based wind energy conversion system
12
作者 Shibani Prasad Mohapatra Pradipta Kishore Dash 《Clean Energy》 EI CSCD 2024年第1期153-170,共18页
This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction g... This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller. 展开更多
关键词 doubly-fed induction generator variable-speed wind turbine vector control active disturbance rejection controller stability analysis
原文传递
Parameter Deviation Effect Study of the Power Generation Unit on a Doubly-Fed Induction Machine-based Shipboard Propulsion System 被引量:2
13
作者 Kai Ni Yihua Hu Chun Gan 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第4期339-348,共10页
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn... To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS. 展开更多
关键词 shipboard propulsion system partially power decoupled doubly-fed induction machine synchronous generator parameter deviation
下载PDF
OPTIMAL DESIGN OF DUAL STATOR-WINDING INDUCTION GENERATOR WITH PWM CONVERTER 被引量:2
14
作者 刘陵顺 胡育文 黄文新 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期185-193,共9页
To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ... To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter. 展开更多
关键词 dual stator-winding induction generator variable speed PWM converter genetic algorithm FEM optimal design
下载PDF
Stability Analysis and Enhanced Virtual Synchronous Control for Brushless Doubly-fed Induction Generator Based Wind Turbines
15
作者 Hailiang Xu Chao Wang +2 位作者 Zhongxing Wang Pingjuan Ge Rende Zhao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2024年第5期1445-1458,共14页
The brushless doubly-fed induction generator(BDFIG)presents significant potential for application in wind power systems,primarily due to the elimination of slip rings and brushes.The application of virtual synchronous... The brushless doubly-fed induction generator(BDFIG)presents significant potential for application in wind power systems,primarily due to the elimination of slip rings and brushes.The application of virtual synchronous control(VSynC)has been demonstrated to effectively augment the inertia of BDFIG systems.However,the dynamic characteristics and stability of BDFIG under weak grid conditions remain largely unexplored.The critical stabilizing factors for BDFIG-based wind turbines(WTs)are methodically investigated,and an enhanced VSynC method based on linear active disturbance rejection control(LADRC)is proposed.The stability analysis reveals that the proposed method can virtually enhance the stability of the grid-connected system under weak grid conditions.The accuracy of the theoretical analysis and the effectiveness of the proposed method are affirmed through extensive simulations and detailed experiments. 展开更多
关键词 Brushless doubly-fed induction generator(BDFIG) virtual synchronous control(VSynC) stability analysis linear active disturbance rejection control(LADRC)
原文传递
On the Unipolar Generator: An Experimental and Theoretical Study
16
作者 Konstantinos Patrinos 《Journal of Applied Mathematics and Physics》 2024年第8期2928-2958,共31页
When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativit... When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity. 展开更多
关键词 Faraday’s Experiment Unipolar generator Homopolar generator Faraday’s inductor Unipolar induction
下载PDF
Steady State Analysis of a Doubly Fed Induction Generator 被引量:3
17
作者 Ahmad M. Alkandari S. A. Soliman Mansour H. Abdel-Rahman 《Energy and Power Engineering》 2011年第4期393-400,共8页
In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for ... In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for wind farms, is excited on the rotor circuit by a slip-frequency current injected to the rotor, from an exciter mounted on the same shaft of the machine. The resulting rotating magnetic field rotates at synchronous speed;as such the generated power has a constant frequency independent of the shaft speed. Effects of the excitation voltage magnitude and phase angle on the active and reactive power are studied, when the machine runs at constant speed. It has been shown that by controlling the excitation voltage magnitude and phase angle would control the mode of operation of the machine;motor mode or generator mode. Furthermore, the effects of the shaft speed on the active and reactive power at constant excitation voltage magnitude and constant phase angle are also investigated. 展开更多
关键词 ASYNCHRONOUS Operation Double FEED induction generator (DFIG) WIND Power
下载PDF
An analytic electromagnetic calculation method for performance evolution of doubly fed induction generators for wind turbines 被引量:1
18
作者 张文娟 黄守道 +1 位作者 高剑 CHEN Zhe 《Journal of Central South University》 SCIE EI CAS 2013年第10期2763-2774,共12页
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D... An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method. 展开更多
关键词 ELECTROMAGNETIC calculation DOUBLY fed induction generator(DFIG) wind TURBINE
下载PDF
Research on Control Strategy of Grid-connected Brushless Doubly-fed Wind Power System Based on Virtual Synchronous Generator Control 被引量:6
19
作者 Shuai Liang Shi Jin Long Shi 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期404-412,共9页
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ... The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation. 展开更多
关键词 Virtual synchronous generator Brushless doubly-fed relutance generator Grid support ability Voltage source control
下载PDF
Behavior an Induction Generator without and with a Voltage Regulator 被引量:4
20
作者 M. L. Elhafyani S. Zouggar +1 位作者 M. Benkaddour A. Aziz 《Smart Grid and Renewable Energy》 2014年第9期207-219,共13页
During the isolated use of a wind system, the output voltage of the self-excited induction generator depends on the variation characteristic of its parameters: the excitation condensers, the drive speed and the load. ... During the isolated use of a wind system, the output voltage of the self-excited induction generator depends on the variation characteristic of its parameters: the excitation condensers, the drive speed and the load. Therefore, the regulation of the tension appears to be of great interest. We focused on the use of an analogical regulator of tension, with the aim of controlling the tension at the exit of the self-excited induction generator. So we modelled, implanted and simulated a wind system (Self-excited induction generator, converters (AC/DC, DC/DC) and load it) in the Orcad/Pspice environment. In the first time the behaviour of the asynchronous generator was analyzed when the load, the excitation capacitor and the drive speed vary in the absence of any form of regulation. This analysis was conducted with the aim of defining the limits of the machine exploitation. In the second time the functioning mode is controlled by an analogical control of tension. The results of simulation show the good performances of the system during the application of the proposed voltage regulator. 展开更多
关键词 WIND Power Self-Excited induction generator CONVERTERS (Buck-Boost) Regulation
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部