A more accurate analysis method on working modes is proposed by considering the winding terminal voltage and the eondueting power device as state parameters. For the three-phase hybrid excitation doubly salient machi...A more accurate analysis method on working modes is proposed by considering the winding terminal voltage and the eondueting power device as state parameters. For the three-phase hybrid excitation doubly salient machine (HEDSM) motor and its three-phase full-bridge inverter, in the proposed analytical method, all possible working modes are generally listed. Then, with the H_PWM-L_ON control strategy, the working modes are detailed with eorresponding equivalent circuits. Experimental results verify the robustness of the analysis.展开更多
Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron e...Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
Application of continuous repetition of motor imagery can improve the performance of exercise tasks.However,there is a lack of more detailed neurophysiological evidence to support the formulation of clear standards fo...Application of continuous repetition of motor imagery can improve the performance of exercise tasks.However,there is a lack of more detailed neurophysiological evidence to support the formulation of clear standards for interventions using motor imagery.Moreover,identification of motor imagery intervention time is necessary because it exhibits possible central fatigue.Therefore,the purpose of this study was to elucidate the development of fatigue during continuous repetition of motor imagery through objective and subjective evaluation.The study involved two experiments.In experiment 1,14 healthy young volunteers were required to imagine grasping and lifting a 1.5-L plastic bottle using the whole hand.Each participant performed the motor imagery task 100 times under each condition with 48 hours interval between two conditions:500 mL or 1500 mL of water in the bottle during the demonstration phase.Mental fatigue and a decrease in pinch power appeared under the 1500-mL condition.There were changes in concentration ability or corticospinal excitability,as assessed by motor evoked potentials,between each set with continuous repetition of motor imagery also under the 1500-mL condition.Therefore,in experiment 2,12 healthy volunteers were required to perform the motor imagery task 200 times under the 1500-mL condition.Both concentration ability and corticospinal excitability decreased.This is the first study to show that continuous repetition of motor imagery can decrease corticospinal excitability in addition to producing mental fatigue.This study was approved by the Institutional Ethics Committee at the Nagasaki University Graduate School of Biomedical and Health Sciences(approval No.18121302)on January 30,2019.展开更多
Transcranial magnetic stimulation(TMS)represents a useful non-invasive approach to studying cortical physiology,in addition to the descending motor pathways(Hallett,2000),and may also be used to investigate the in...Transcranial magnetic stimulation(TMS)represents a useful non-invasive approach to studying cortical physiology,in addition to the descending motor pathways(Hallett,2000),and may also be used to investigate the intracortical facilitatory and inhibitory mechanisms.展开更多
Transcranial magnetic stimulation,a type of noninvasive brain stimulation,has become an ancillary therapy for motor function rehabilitation.Most previous studies have focused on the effects of repetitive transcranial ...Transcranial magnetic stimulation,a type of noninvasive brain stimulation,has become an ancillary therapy for motor function rehabilitation.Most previous studies have focused on the effects of repetitive transcranial magnetic stimulation(rTMS)on motor function in stroke patients.There have been relatively few studies on the effects of different modalities of rTMS on lower extremity motor function and corticospinal excitability in patients with stroke.The MEDLINE,Embase,Cochrane Library,ISI Science Citation Index,Physiotherapy Evidence Database,China National Knowledge Infrastructure Library,and ClinicalTrials.gov databases were searched.Parallel or crossover randomized controlled trials that addressed the effectiveness of rTMS in patients with stroke,published from inception to November 28,2019,were included.Standard pairwise meta-analysis was conducted using R version 3.6.1 with the“meta”package.Bayesian network analysis using the Markov chain Monte Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol interventions.Network meta-analysis results of 18 randomized controlled trials regarding lower extremity motor function recovery revealed that low-frequency rTMS had better efficacy in promoting lower extremity motor function recovery than sham stimulation.Network meta-analysis results of five randomized controlled trials demonstrated that highfrequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency rTMS or sham stimulation.These findings suggest that rTMS can improve motor function in patients with stroke,and that low-frequency rTMS mainly affects motor function,whereas high-frequency rTMS increases the amplitudes of motor evoked potentials.More highquality randomized controlled trials are needed to validate this conclusion.The work was registered in PROSPERO(registration No.CRD42020147055)on April 28,2020.展开更多
The remodeling process of synapses and neurotransmitter receptors of facial nucleus were observed. Models were set up by facial-facial anastomosis in rat. At post-surgery day (PSD) 0,7,21and 60, synaptophysin (p38...The remodeling process of synapses and neurotransmitter receptors of facial nucleus were observed. Models were set up by facial-facial anastomosis in rat. At post-surgery day (PSD) 0,7,21and 60, synaptophysin (p38), NMDA receptor subunit 2A and AMPA receptor subunit 2 (GluR2) were observed by immunohistochemical method and semi-quantitative RT-PCR, respectively. Mean-while, the synaptic structure of the facial motorneurons was observed under a transmission electron microscope (TEM). The intensity of p38 immunoreactivity was decreased, reaching the lowest value at PSD day 7, and then increased slightly at PSD 21. Ultrastructurally, the number of synapses in nucleus of the operational side decreased, which was consistent with the change in P38 immunoreactivity. NMDAR2A mRNA was down-regulated significantly in facial nucleus after the operation (P〈0.05), whereas AMPAR2 mRNA levels remained unchanged (P〉0.05). The synapses innervation and the expression of NMDAR2A and AMPAR2 mRNA in facial nucleus might be modified to suit for the new motor tasks following facial-facial anastomosis, and influenced facial nerve regeneration and recovery.展开更多
目的观察电针上肢穴位对健康受试者初级运动皮层(primary motor cortex,M1)躯干脑区皮质脊髓兴奋性的影响。方法纳入15名健康受试者,采用交叉设计。试验一观察电针上肢穴位对竖脊肌(erector spinae,ES)皮质脊髓兴奋性的影响,受试者随机...目的观察电针上肢穴位对健康受试者初级运动皮层(primary motor cortex,M1)躯干脑区皮质脊髓兴奋性的影响。方法纳入15名健康受试者,采用交叉设计。试验一观察电针上肢穴位对竖脊肌(erector spinae,ES)皮质脊髓兴奋性的影响,受试者随机先后进入3组试验,A组电针合谷穴,B组电针孔最穴,C组假针合谷穴。运用经颅磁刺激,检测干预前后对侧M1第一骨间背侧肌、桡侧腕屈肌及ES的运动诱发电位(motor evoked potentials,MEPs)的波幅和潜伏期,ES的MEPs波幅升高者进入试验二。试验二为抑制背侧前运动皮层(premotor cortex,PMd)后电针上肢穴位对ES的皮质脊髓兴奋性的作用研究,受试者随机先后进入两组试验,D组采用抑制PMd配合电针合谷穴干预,E组采用抑制PMd配合电针孔最穴干预。观察并比较两组对侧M1上肢脑区和躯干脑区MEPs的波幅和潜伏期。结果A组和B组干预后上肢脑区及躯干脑区MEPs总波幅均较同组干预前显著增加(P<0.001,P<0.01)。A组干预后上肢脑区及躯干脑区MEPs总波幅均明显高于C组,B组干预后仅躯干脑区MEPs总波幅明显高于C组,差异均具有统计学意义(P<0.001)。D组干预后上肢脑区最佳刺激点MEPs平均波幅及总波幅较同组干预前均显著增加(P<0.05)。D组和E组干预前后躯干脑区最佳刺激点的MEPs平均波幅及总波幅比较,差异也均无统计学意义(P>0.05)。结论生理状况下,电针合谷、孔最穴均可增强ES的皮质脊髓兴奋性,二者之间无明显差异,PMd可能参与其过程。展开更多
文摘A more accurate analysis method on working modes is proposed by considering the winding terminal voltage and the eondueting power device as state parameters. For the three-phase hybrid excitation doubly salient machine (HEDSM) motor and its three-phase full-bridge inverter, in the proposed analytical method, all possible working modes are generally listed. Then, with the H_PWM-L_ON control strategy, the working modes are detailed with eorresponding equivalent circuits. Experimental results verify the robustness of the analysis.
基金This paper is based on results obtained from the future pioneering program"Development of Magnetic Material Technology for High-efficiency Motors"commissioned by the New Energy and Industrial Technology Development Organization(NEDO)。
文摘Design and experimental studies on a hybrid excitation flux switching motor as a traction motor for hybrid electric vehicles drive are presented.A stator body of the motor consists of not only laminated silicon-iron electromagnetic steel and three-phase armature windings,but also both of field excitation coils and permanent magnets working together as a variable field magnetomotive force source.On the other hand,a rotor is composed of just laminated silicon-iron electromagnetic steel with salient poles like switched reluctance motor.To bring out the best in drive performances of the hybrid excitation flux switching motor as a variable flux motor for the application,each material adopted for the stator and rotor body should be designed properly in terms of motor efficiency,maximum torque and power densities and so forth.As some of them,in this paper,thinner silicon-iron electromagnetic steel sheet and permanent magnets with high remanent and low amount of Dysprosium used are applied for achieving higher motor efficiency.Moreover,all coils wound flatwise and edgewise using rectangular wires are introduced to realizing high filling factor for reduced copper losses.Experimental tests using a 60kW prototype of the motor demonstrates the designed motor has good motor efficiency under frequent operating points expected for the target vehicle drive.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
文摘Application of continuous repetition of motor imagery can improve the performance of exercise tasks.However,there is a lack of more detailed neurophysiological evidence to support the formulation of clear standards for interventions using motor imagery.Moreover,identification of motor imagery intervention time is necessary because it exhibits possible central fatigue.Therefore,the purpose of this study was to elucidate the development of fatigue during continuous repetition of motor imagery through objective and subjective evaluation.The study involved two experiments.In experiment 1,14 healthy young volunteers were required to imagine grasping and lifting a 1.5-L plastic bottle using the whole hand.Each participant performed the motor imagery task 100 times under each condition with 48 hours interval between two conditions:500 mL or 1500 mL of water in the bottle during the demonstration phase.Mental fatigue and a decrease in pinch power appeared under the 1500-mL condition.There were changes in concentration ability or corticospinal excitability,as assessed by motor evoked potentials,between each set with continuous repetition of motor imagery also under the 1500-mL condition.Therefore,in experiment 2,12 healthy volunteers were required to perform the motor imagery task 200 times under the 1500-mL condition.Both concentration ability and corticospinal excitability decreased.This is the first study to show that continuous repetition of motor imagery can decrease corticospinal excitability in addition to producing mental fatigue.This study was approved by the Institutional Ethics Committee at the Nagasaki University Graduate School of Biomedical and Health Sciences(approval No.18121302)on January 30,2019.
文摘Transcranial magnetic stimulation(TMS)represents a useful non-invasive approach to studying cortical physiology,in addition to the descending motor pathways(Hallett,2000),and may also be used to investigate the intracortical facilitatory and inhibitory mechanisms.
基金supported by the 1·3·5 project for disciplines of excellence-Clinical Research Incubation Project,West China Hospital,Sichuan University,China,No.2020HXFH051(to QG).
文摘Transcranial magnetic stimulation,a type of noninvasive brain stimulation,has become an ancillary therapy for motor function rehabilitation.Most previous studies have focused on the effects of repetitive transcranial magnetic stimulation(rTMS)on motor function in stroke patients.There have been relatively few studies on the effects of different modalities of rTMS on lower extremity motor function and corticospinal excitability in patients with stroke.The MEDLINE,Embase,Cochrane Library,ISI Science Citation Index,Physiotherapy Evidence Database,China National Knowledge Infrastructure Library,and ClinicalTrials.gov databases were searched.Parallel or crossover randomized controlled trials that addressed the effectiveness of rTMS in patients with stroke,published from inception to November 28,2019,were included.Standard pairwise meta-analysis was conducted using R version 3.6.1 with the“meta”package.Bayesian network analysis using the Markov chain Monte Carlo algorithm was conducted to investigate the effectiveness of different rTMS protocol interventions.Network meta-analysis results of 18 randomized controlled trials regarding lower extremity motor function recovery revealed that low-frequency rTMS had better efficacy in promoting lower extremity motor function recovery than sham stimulation.Network meta-analysis results of five randomized controlled trials demonstrated that highfrequency rTMS led to higher amplitudes of motor evoked potentials than low-frequency rTMS or sham stimulation.These findings suggest that rTMS can improve motor function in patients with stroke,and that low-frequency rTMS mainly affects motor function,whereas high-frequency rTMS increases the amplitudes of motor evoked potentials.More highquality randomized controlled trials are needed to validate this conclusion.The work was registered in PROSPERO(registration No.CRD42020147055)on April 28,2020.
基金supported by a grant from the National Natural Science Foundation of China (No. 30600699).
文摘The remodeling process of synapses and neurotransmitter receptors of facial nucleus were observed. Models were set up by facial-facial anastomosis in rat. At post-surgery day (PSD) 0,7,21and 60, synaptophysin (p38), NMDA receptor subunit 2A and AMPA receptor subunit 2 (GluR2) were observed by immunohistochemical method and semi-quantitative RT-PCR, respectively. Mean-while, the synaptic structure of the facial motorneurons was observed under a transmission electron microscope (TEM). The intensity of p38 immunoreactivity was decreased, reaching the lowest value at PSD day 7, and then increased slightly at PSD 21. Ultrastructurally, the number of synapses in nucleus of the operational side decreased, which was consistent with the change in P38 immunoreactivity. NMDAR2A mRNA was down-regulated significantly in facial nucleus after the operation (P〈0.05), whereas AMPAR2 mRNA levels remained unchanged (P〉0.05). The synapses innervation and the expression of NMDAR2A and AMPAR2 mRNA in facial nucleus might be modified to suit for the new motor tasks following facial-facial anastomosis, and influenced facial nerve regeneration and recovery.