期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Prediction and Derivation of the Higgs Boson from the Neutron and Properties of Hydrogen Demonstrating Relationships with Planck’s Time, the Down Quark, and the Fine Structure Constant 被引量:2
1
作者 Donald William Chakeres 《Journal of Modern Physics》 2014年第16期1670-1683,共14页
A high accuracy Higgs boson, H0, is an important physical constant. The Higgs boson is associated with the property of mass related to broken symmetry in the Standard Model. The H0 mass cannot be derived by the Standa... A high accuracy Higgs boson, H0, is an important physical constant. The Higgs boson is associated with the property of mass related to broken symmetry in the Standard Model. The H0 mass cannot be derived by the Standard Model. The goal of this work is to derive and predict the mass of H0 from the subatomic data of the frequency equivalents of the neutron, electron, Bohr radius, and the ionization energy of hydrogen. H0’s close relationships to the fine structure constant, α, the down quark, and Planck time, tP are demonstrated. The methods of the harmonic neutron hypothesis introduced in 2009 were utilized. It assumes that the fundamental constants as frequency equivalents represent a classic unified harmonic system where each physical constant is associated with a classic harmonic integer fraction. It has been demonstrated that the sum exponent of a harmonic integer fraction, and a small derived linear δ value of the annhilation frequency of the neutron, vn, 2.2718591 × 1023 Hz, (vns) as a dimensionless coupling constant represent many physical constants as frequency equivalents. This is a natural unit system. The harmonic integer fraction series is 1/±n, and 1 ± 1/n for n equals 1 to ∞. The H0 is empirically and logically is associated with harmonic fractions, 1/11 and 1 + 1/11. α-1 is associated with 11. α-1 is a free space scaling constant for the electromagnetic force so it is logical that 11 should also have a pair, but for a free space mass constant. Also there should be a harmonic faction pair for the down quark, 1 - 1/11, just as there is pairing of the up quark, 1 - 1/10, and top quark, 1 + 1/10. The harmonic neutron hypothesis has published a method deriving a high accuracy Planck time, tP from the same limited subatomic data. The δ line for H0 should be closely associated with tP since they both are related to mass. The preferred derived value related to tP2 is 125.596808 GeV/c2. A less attractive derived value is 125.120961 GeV/c2 from the weak force factors only. The experimental CMS and Atlas value ranges are 125.03+0.26+0.13-0.27-0.15 and 125.36±0.37±0.18 GeV/c2. Empirically the H0 δ line is closely related to the same factors of the tP δ line, but with inverse sign of the slope. The H0 completes the paring of a free space constant for mass, the down quark, and an inverse sign δ line factors with tP. It is possible to accurately derive the mass of H0 from subatomic physical data. The model demonstrates that H0 is closely associated with α, the down quark, and tP. This prediction can be scrutinized in the future to see if it is accurate. The model has already published accurate predictions of the masses of the quarks. 展开更多
关键词 Higgs BOSON NEUTRON Unificaiton Model down quark Fine Structure Constant PLANCK TIME Gravity
下载PDF
Standard Model Fermion Masses and Charges from Holographic Analysis
2
作者 T. R. Mongan 《Journal of Modern Physics》 2024年第6期796-803,共8页
The Standard Model of particle physics involves twelve fundamental fermions, treated as point particles, in four charge states. However, the Standard Model does not explain why only three fermions are in each charge s... The Standard Model of particle physics involves twelve fundamental fermions, treated as point particles, in four charge states. However, the Standard Model does not explain why only three fermions are in each charge state or account for neutrino mass. This holographic analysis treats charged Standard Model fermions as spheres with mass 0.187 g/cm<sup>2</sup> times their surface area, using the proportionality constant in the holographic relation between mass of the observable universe and event horizon radius. The analysis requires three Standard Model fermions per charge state and relates up quark and down quark masses to electron mass. Holographic analysis specifies electron mass, to six significant figures, in terms of fundamental constants α,ℏ,G,Λ and Ω Λ . Treating neutrinos as spheres and equating electron neutrino energy density with cosmic vacuum energy density predicts neutrino masses consistent with experiment. 展开更多
关键词 Electron Mass Up quark Mass down quark Mass Neutrino Masses
下载PDF
Manifestation of Color Confinement in the YY Model for Atomic Nuclei
3
作者 Hongguang Yang Weidong Yang 《Journal of Modern Physics》 2020年第12期1999-2010,共12页
In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between... In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between the structural requirements from the YY model and some elementary properties of the color dynamics from QCD. The open questions in the YY model, namely the holding forces for triple nodes and for pairing space links, are exactly covered by the three-color compensation or by the paired color anti-color balance. We will see what colors and anti-colors do mean in the YY model, how up quarks and down quarks get assigned a color or anti-color. We will discover some relationships between gluon-based interactions as described in the standard model and pairing space links in the YY model. 展开更多
关键词 Quantum Chromodynamics QCD Color Confinement YY Model for Atomic Nucleus Pairing Space Link PSL Triple Space Link TSL Colored up quark Colored down quark Colored Hydrogen Nucleus Colored Helium Nucleus Colored Helium Isotope Nucleus Color Confinement Aggregate State CCAS Color-Balanced PSL Tumbling of Colored PSLs
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部