An effective statistical downscaling scheme was developed on the basis of singular value decomposition to predict boreal winter(December-January-February)precipitation over China.The variable geopotential height at 50...An effective statistical downscaling scheme was developed on the basis of singular value decomposition to predict boreal winter(December-January-February)precipitation over China.The variable geopotential height at 500 hPa(GH5)over East Asia,which was obtained from National Centers for Environmental Prediction’s Coupled Forecast System(NCEP CFS),was used as one predictor for the scheme.The preceding sea ice concentration(SIC)signal obtained from observed data over high latitudes of the Northern Hemisphere was chosen as an additional predictor.This downscaling scheme showed significantly improvement in predictability over the original CFS general circulation model(GCM)output in cross validation.The multi-year average spatial anomaly correlation coefficient increased from–0.03 to 0.31,and the downscaling temporal root-mean-square-error(RMSE)decreased significantly over that of the original CFS GCM for most China stations.Furthermore,large precipitation anomaly centers were reproduced with greater accuracy in the downscaling scheme than those in the original CFS GCM,and the anomaly correlation coefficient between the observation and downscaling results reached~0.6 in the winter of 2008.展开更多
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni...The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.展开更多
In complex terrain regions, it is very challenging to obtain high accuracy and resolution precipitation data that are required in land hydrological studies. In this study, an adaptive precipitation downscaling method ...In complex terrain regions, it is very challenging to obtain high accuracy and resolution precipitation data that are required in land hydrological studies. In this study, an adaptive precipitation downscaling method is proposed based on the statistical downscaling model MicroMet. A key input parameter in the MicroMet is the precipitation adjustment factor(PAF) that shows the elevation dependence of precipitation. Its value is estimated conventionally based on station observations and suffers sparse stations in high altitudes. This study proposes to estimate the PAF value and its spatial variability with precipitation data from high-resolution atmospheric simulations and tests the idea in Nepal of South Himalayas, where rainfall stations are relatively dense. The result shows that MicroMet performs the best with the PAF value estimated from the simulation data at the scale of approximately 1.5 degrees. Not only the value at this scale is qualitatively consistent with early knowledge obtained from intensive observations, but also the downscaling performance with this value is better than or comparable to that with the PAF estimated from dense station data. Finally, it is shown that the PAF estimation, although critical, cannot replace the importance of increasing input station density for downscaling.展开更多
Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is th...Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is therefore necessary to use a method that combines both dynamical and statistical predictions of winter precipitation over eastern China (hereinafter called the hybrid approach), in this connection, seasonal real-time prediction models for winter precipitation were established for the six regions. The models use both the preceding observations and synchronous numerical predictions through a multivariate linear regression analysis. To improve the prediction accuracy, the systematic error between the original regression model result and the corresponding observation was corrected. Cross-validation analysis and real-time prediction experiments indicate that the prediction models using the hybrid approach can reliably predict the trend, sign, and interannual variation of regionally averaged winter precipitation in the six regions of concern. Averaged over the six target regions, the anomaly correlation coefficient and the rate with the same sign of anomaly between the cross-validation analysis and observation during 1982-2008 are 0.69 and 78%, respectively. This indicates that the hybrid prediction approach adopted in this study is applicable in operational practice.展开更多
利用TIGGE资料中欧洲中期天气预报中心(ECMWF,the European Centre for Medium-Range Weather Forecasts)、日本气象厅(JMA,the Japan Meteorological Agency)、美国国家环境预报中心(NCEP,the National Centers for Environmental...利用TIGGE资料中欧洲中期天气预报中心(ECMWF,the European Centre for Medium-Range Weather Forecasts)、日本气象厅(JMA,the Japan Meteorological Agency)、美国国家环境预报中心(NCEP,the National Centers for Environmental Prediction)以及英国气象局(UKMO,the UK Met Office)4个中心1~7 d预报的日降水量集合预报资料,并以中国降水融合产品作为"观测值",对我国地面降水量预报进行统计降尺度处理。采用空间滑动窗口增加中雨和大雨雨量样本,建立分级雨量的回归方程,并与未分级雨量的统计降尺度预报进行对比。结果表明,对于不同模式、不同预报时效以及不同降水量级,统计降尺度的预报技巧改进程度不尽相同。统计降尺度的预报技巧依赖于模式本身的预报效果。相比雨量未分级回归,雨量分级回归的统计降尺度预报与观测值的距平相关系数更高,均方根误差更小,不同量级降水的ETS评分明显提高。对雨量分级回归统计降尺度预报结果进行二次订正,可大大减少小雨的空报。展开更多
基金supported by the China Meteorological Special Project(GYHY201206016)the National Basic Research Program of China(2010CB950304)the Innovation Key Program of the Chinese Academy of Sciences(KZCX2-YW-QN202)
文摘An effective statistical downscaling scheme was developed on the basis of singular value decomposition to predict boreal winter(December-January-February)precipitation over China.The variable geopotential height at 500 hPa(GH5)over East Asia,which was obtained from National Centers for Environmental Prediction’s Coupled Forecast System(NCEP CFS),was used as one predictor for the scheme.The preceding sea ice concentration(SIC)signal obtained from observed data over high latitudes of the Northern Hemisphere was chosen as an additional predictor.This downscaling scheme showed significantly improvement in predictability over the original CFS general circulation model(GCM)output in cross validation.The multi-year average spatial anomaly correlation coefficient increased from–0.03 to 0.31,and the downscaling temporal root-mean-square-error(RMSE)decreased significantly over that of the original CFS GCM for most China stations.Furthermore,large precipitation anomaly centers were reproduced with greater accuracy in the downscaling scheme than those in the original CFS GCM,and the anomaly correlation coefficient between the observation and downscaling results reached~0.6 in the winter of 2008.
基金The National Nat-ural Science Foundation of China (NSFC), Grant Nos.90711003, 40375014the program of GYHY200706005, and the APCC Visiting Scientist Program jointly supportedthis work.
文摘The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(2019QZKK0206)National Natural Science Foundation of China (41501078, 41871071, and 41905087)。
文摘In complex terrain regions, it is very challenging to obtain high accuracy and resolution precipitation data that are required in land hydrological studies. In this study, an adaptive precipitation downscaling method is proposed based on the statistical downscaling model MicroMet. A key input parameter in the MicroMet is the precipitation adjustment factor(PAF) that shows the elevation dependence of precipitation. Its value is estimated conventionally based on station observations and suffers sparse stations in high altitudes. This study proposes to estimate the PAF value and its spatial variability with precipitation data from high-resolution atmospheric simulations and tests the idea in Nepal of South Himalayas, where rainfall stations are relatively dense. The result shows that MicroMet performs the best with the PAF value estimated from the simulation data at the scale of approximately 1.5 degrees. Not only the value at this scale is qualitatively consistent with early knowledge obtained from intensive observations, but also the downscaling performance with this value is better than or comparable to that with the PAF estimated from dense station data. Finally, it is shown that the PAF estimation, although critical, cannot replace the importance of increasing input station density for downscaling.
基金Supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-Q03-3)National Basic Research Program of China(2009CB421406)+1 种基金Special Public Welfare Research Fund for Meteorological Profession of China Mete-orological Administration(GYHY200906018)National Natural Science Foundation of China(40875048)
文摘Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is therefore necessary to use a method that combines both dynamical and statistical predictions of winter precipitation over eastern China (hereinafter called the hybrid approach), in this connection, seasonal real-time prediction models for winter precipitation were established for the six regions. The models use both the preceding observations and synchronous numerical predictions through a multivariate linear regression analysis. To improve the prediction accuracy, the systematic error between the original regression model result and the corresponding observation was corrected. Cross-validation analysis and real-time prediction experiments indicate that the prediction models using the hybrid approach can reliably predict the trend, sign, and interannual variation of regionally averaged winter precipitation in the six regions of concern. Averaged over the six target regions, the anomaly correlation coefficient and the rate with the same sign of anomaly between the cross-validation analysis and observation during 1982-2008 are 0.69 and 78%, respectively. This indicates that the hybrid prediction approach adopted in this study is applicable in operational practice.
文摘利用TIGGE资料中欧洲中期天气预报中心(ECMWF,the European Centre for Medium-Range Weather Forecasts)、日本气象厅(JMA,the Japan Meteorological Agency)、美国国家环境预报中心(NCEP,the National Centers for Environmental Prediction)以及英国气象局(UKMO,the UK Met Office)4个中心1~7 d预报的日降水量集合预报资料,并以中国降水融合产品作为"观测值",对我国地面降水量预报进行统计降尺度处理。采用空间滑动窗口增加中雨和大雨雨量样本,建立分级雨量的回归方程,并与未分级雨量的统计降尺度预报进行对比。结果表明,对于不同模式、不同预报时效以及不同降水量级,统计降尺度的预报技巧改进程度不尽相同。统计降尺度的预报技巧依赖于模式本身的预报效果。相比雨量未分级回归,雨量分级回归的统计降尺度预报与观测值的距平相关系数更高,均方根误差更小,不同量级降水的ETS评分明显提高。对雨量分级回归统计降尺度预报结果进行二次订正,可大大减少小雨的空报。