期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Optimization of the Drag Forces of Shell Janus Micromotor:A Study Based on Hydrodynamical Analysis and Numerical Simulation 被引量:1
1
作者 Qiang Wang Zhen Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期443-462,共20页
Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shel... Micromotors are widely used in cell operation,drug delivery and environmental decontamination due to their small size,low energy consumption and large propelling power.Compared to traditional Janus micromotor,the shell Janusmicromotor has better motion performance.However,the structural optimization of itsmotion performance is still unclear.The main factor restricting the motion performance of shell Janus micromotors is the drag forces.In the current work,theoretical analysis and numerical simulation were applied to analyze the drag forces of shell Janus micromotors.This study aims to design the optimum structure of shell Janus micromotors with minimum drag forces and obtain the magnitude of drag forces considering both the internal and external fluids of the shell Janus micromotors.Moreover,the influence of the motor geometry and Reynolds number on the drag coefficient was analyzed using numerical simulations.The results provide guidance for the optimum flow velocity,opening diameter and shell thickness to achieve minimum drag force. 展开更多
关键词 Shell janus micromotor drag force dimensionless numbers
下载PDF
Spectral Analysis of Nonlinear Drag Forces
2
作者 马汝建 李桂喜 赵东 《China Ocean Engineering》 SCIE EI 2005年第2期325-332,共8页
The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation... The spectral properties of nonlinear drag forces of random waves on vertical circular cylinders are analyzed in this paper by means of nonlinear spectral analysis. The analysis provides basic parameters for estimation of the characteristic drag forces. Numerical computation is also performed for the investigation of the effects of nonlinearity of the drag forces. The results indicate that the wave drag forces calculated by linear wave theory are larger than those calculated by the third order Stokes wave theory for given waves. The difference between them increases with wave height. The wave drag forces calculated by use of linear approximation are about 5% smaller than their actual values when measured in the peak values of spectral densities. This will result in a safety problem for the design of offshore structures. Therefore, the nonlinear effect of wave drag forces should be taken into consideration in design and application of important offshore structures. 展开更多
关键词 offshore engineering random wave drag force NONLINEARITY spectral property Stokes wave theory
下载PDF
Computational Solution to the Problems of Projectile Motion under Significant Linear Drag Effect
3
作者 Annasi Ayubu Said Msafiri Mmasa Mshewa +2 位作者 Grant Charles Mwakipunda Mbega Ramadhani Ngata Elfakiri Ali Mohamed 《Open Journal of Applied Sciences》 CAS 2023年第4期508-528,共21页
This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to ... This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to the cross-section area of the projectile, the velocity of the particle, and the medium’s density. From zero air resistance force (vacuum) the problems are well known with solutions, but with air resistance (drag force) the problems have no exact analytical solutions which lead to most of the significant scientific research works using numerical methods. Therefore, this study aims to present the analysis of the computational modelling of drag force exerted by the surrounding medium on the linear motion. However, the horizontal and vertical components of differential equations of motion were derived and characterized from the solutions governed by Newton’s 2<sup>nd</sup> law of motion. The baseball features were presented as the projectile (object) in this work. In addition, the numerical computational results were received from FreeMat. The results were discussed and compared with those from the vacuum. Moreover, the displacements, velocities, range, and trajectories of the projectile were all discussed and a conclusion was made. 展开更多
关键词 Drag Force Air Resistance PROJECTILE Newton’s Law
下载PDF
Two-dimensional analytical solution for compound channel flows with vegetated floodplains 被引量:7
4
作者 槐文信 高敏 +1 位作者 曾玉红 李丹 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第9期1121-1130,共10页
This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vege... This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vegetation are considered as the drag force item. The secondary currents are also taken into account in the governing equations, and the preliminary estimation of the secondary current intensity coefficient K is discussed. The predicted results for the straight channels and the apex cross-section of meandering channels agree well with experimental data, which shows that the analytical model presented here can be applied to predict the flow in compound channels with vegetated floodplains. 展开更多
关键词 compound channel VEGETATION drag force secondary currents
下载PDF
Two dimensional analytical solution for a partially vegetated compound channel flow 被引量:5
5
作者 槐文信 徐治钢 +1 位作者 杨中华 曾玉红 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第8期1077-1084,共8页
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the un... The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes. 展开更多
关键词 compound channel depth-averaged velocity drag force eddy viscosity model analytical solution VEGETATION
下载PDF
EFFECT OF INTERPHASE LIFT FORCE ON THE FLUID FLOW IN AN AIR-STIRRED CYLINDRICAL VESSEL 被引量:6
6
作者 L.F. Zhang K.K. Cai Y. Qu and Y.S. Shen Postdoctoral Fellow of Japan Science Promotion Society Taniguchi Lab., Department of Metallurgy, Graduate School of Engineering, Tohoku University, Sendai980-8579, Japan School of Metallurgy, University of Scien 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期921-931,共11页
In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially d... In the present paper, based on the two-phase model (Eulerian model), the two dimensional fluid flow liz air-stirred water systems is simulated, and the effect of interphase lift force on the fluid flow is specially discussed. In the Eulerian two-phase model, gas and liquid phase are considered to be two different continuous fluids interacting with each other through the finite inter-phase areas. The exchange between the phases is represented by source terms in conversation equations. Turbulence is assumed to be a property of the liquid phase, k - ε model is used to describe the behavior of the liquid phase. The dispersion of phases due to turbulence is represented by introducing a diffusion term in mass consecrvation equation. The contribution of bubble movement to the turbulent energy and its dissipation rate is taken into accounted by adding extra volumetric source terms to the equations of turbulent enemy and its dissipation rate. The comparison between the mathematical simulation and experiment data indicates that the interphase lift force has a big effect on the flow behavior, and considering both drug force and lift force as interphase forces is important to accurately simulate the gas-water two-phase fluid flow in air-stirred systems. The interphase lift force makes bubbles move away from the centerline, the gas concentration is decreased near the centerline, and increased near the wall. The lift force is smaller than drug force at the same place, especially far away from the centerline. 展开更多
关键词 two-phase Eulerian model interphase lift force interphase drag force mathematical simulation
下载PDF
Numerical simulation of low-Reynolds number flows past two tandem cylinders of different diameters 被引量:3
7
作者 Yong-tao WANG Zhong-min YAN Hui-min WANG 《Water Science and Engineering》 EI CAS CSCD 2013年第4期433-445,共13页
The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream c... The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics. 展开更多
关键词 two tandem cylinders vortex shedding drag force lift force numerical simulation
下载PDF
Influence of hydrogen concentration on Fe_2O_3 particle reduction in fluidized beds under constant drag force 被引量:2
8
作者 Lei Guo Han Gao +2 位作者 Jin-tao Yu Zong-liang Zhang Zhan-cheng Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期12-20,共9页
The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing dur... The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min^-1;H2:2 L·min^-1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model. 展开更多
关键词 fluidized beds ferric oxide iron ores AGGLOMERATION HYDROGEN drag force
下载PDF
Analytical solution of velocity distribution for flow through submerged large deflection flexible vegetation 被引量:2
9
作者 Wei-jie WANG Wen-xin HUAI +1 位作者 Yu-hong ZENG Ji-fu ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第1期107-120,共14页
An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separate... An analytical solution for predicting the vertical distribution of streamwise mean velocity in an open channel flow with submerged flexible vegetation is proposed when large bending occurs. The flow regime is separated into two horizontal layers: a vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis for the flexible vegetation is conducted, and an approximately linear relationship between the drag force of bending vegetation and the streamwise mean flow velocity is observed in the case of large deflection, which differes significantly from the case of rigid upright vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow velocity expression in the momentum equation is derived, and an analytical solution is obtained. For the free water layer, a new expression is presented, replacing the traditional logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface. Finally, the analytical predictions are compared with published experimental data, and the good agreement demonstrates that this model is effective for the open channel flow through the large deflection flexible vegetation. 展开更多
关键词 analytical velocity distribution linear drag force flexible vegetation largedeflection mixing length theory
下载PDF
Hybrid Analysis Approach for Stochastic Response of Offshore Jacket Platforms 被引量:2
10
作者 金伟良 郑忠双 +1 位作者 李海波 张立 《China Ocean Engineering》 SCIE EI 2000年第2期143-152,共10页
The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stoc... The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering. 展开更多
关键词 offshore platform stochastic response non-linear drag force hybrid analysis wave-structure interaction
下载PDF
Normalization of Hydrodynamic Coefficients in Morison Equation 被引量:2
11
作者 LI Yucheng Professor, the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, P. R. China. 《China Ocean Engineering》 SCIE EI 1999年第2期125-132,共8页
The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or ... The hydrodynamic coefficients C-d and C-m are not only dependent on the size of slender cylinder, its location in water, KC number and Re number, but also vary with environmental conditions, i.e., in regular waves or in irregular waves, in pure waves or in wave-current coexisting field. In this paper, the normalization of hydrodynamic coefficients for various environmental conditions is discussed. When a proper definition of KC number and proper characteristic values of irregular waves are used, a unified relationship between C-d, C-m and KC number for regular waves, irregular waves, pure waves and wave-current coexisting field can be obtained. 展开更多
关键词 Morison Equation drag force coefficient inertia force coefficient hydrodynamic coefficient NORMALIZATION
下载PDF
Two-dimensional Dynamics Simulation of Two-phase Debris Flow 被引量:2
12
作者 LIU Wei HE Siming OUYANG Chaojun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1873-1883,共11页
To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled a... To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement. 展开更多
关键词 two-phase debris flow numerical simulation frictional resistance drag force
下载PDF
Two-flow model for piping erosion based on liquid-solid coupling 被引量:2
13
作者 LIANG Yue WANG Jun-jie LIU Ming-wei 《Journal of Central South University》 SCIE EI CAS 2013年第8期2299-2306,共8页
Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to... Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored. 展开更多
关键词 piping erosion two-flow model liquid-solid interaction erosion rate drag force
下载PDF
Numerical Study on the Hydrodynamic Characteristics of Biofouled Full-Scale Net Cage 被引量:4
14
作者 毕春伟 赵云鹏 董国海 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期401-414,共14页
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For comput... The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al.(2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting. 展开更多
关键词 net cage biofouling drag force flow field numerical simulation
下载PDF
New Mechanism and Analytical Formula for Understanding the Gravity Constant <i>G</i> 被引量:3
15
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期357-367,共11页
The nature of gravitation and <em>G</em> is not well understood. A new gravitation mechanism is proposed that explains the origin and essence of the gravitational constant, <em>G</em>. Based on... The nature of gravitation and <em>G</em> is not well understood. A new gravitation mechanism is proposed that explains the origin and essence of the gravitational constant, <em>G</em>. Based on general relativity, the vacuum is considered to be a superfluid with measurable density. Rotating bodies drag vacuum and create a vortex with gradient pressure. The drag force of vacuum fluid flow in the arm of the vortex is calculated relative to the static vacuum and a value that is numerically equal to that of <em>G</em> is obtained. Using Archimedes’ principle, it is determined that <em>G</em> is the volume of vacuum displaced by a force equivalent to its weight which is equal to the drag force of the vacuum. It is concluded that the gravitational constant <em>G</em> expresses the force needed to displace a cubic metre of vacuum that weighs one kg in one second. Therefore, <em>G</em> is not a fundamental physical constant but rather is an expression of the resistance encountered by the gravitational force in the vacuum. 展开更多
关键词 Gravitational Constant Vacuum Density Drag Force Vortex Formation Specific Volume Flow Archimedes’ Principle
下载PDF
Dynamic Analysis for the Global Performance of An SPM-Feeder-Cage System Under Waves and Currents 被引量:2
16
作者 Cristian CIFUENTES M.H.KIM 《China Ocean Engineering》 SCIE EI CSCD 2015年第3期415-430,共16页
In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodyna... In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters. 展开更多
关键词 offshore aquaculture SPM(single point mooring) feeder vessel connecting lines operational/survival environment drag force equivalent net cage grouping net modeling line tensions solidity ratio
下载PDF
Numerical Study on Characteristics of Supercavitating Flow Around the Variable-Lateral-Force Cavitator
17
作者 HU Xiao GAO Ye SHI Xiao-tao 《China Ocean Engineering》 SCIE EI CSCD 2017年第1期123-129,共7页
A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow ... A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases. 展开更多
关键词 supercavitating flow cavitator drag force lateral forces numerical investigation
下载PDF
Motion of a permeable shell in a spherical container filled with non-Newtonian fluid
18
作者 V.MISHRA B.R.GUPTA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第12期1697-1708,共12页
This paper presents an analytical study of creeping motion of a permeable sphere in a spherical container filled with a micro-polar fluid. The drag experienced by the permeable sphere when it passes through the center... This paper presents an analytical study of creeping motion of a permeable sphere in a spherical container filled with a micro-polar fluid. The drag experienced by the permeable sphere when it passes through the center of the spherical container is studied. Stream function solutions for the flow fields are obtained in terms of modified Bessel functions and Gegenbauer functions. The pressure fields, the micro-rotation components, the drag experienced by a permeable sphere, the wall correction factor, and the flow rate through the permeable surface are obtained for the frictionless impermeable spherical container and the zero shear stress at the impermeable spherical container. Variations of the drag force and the wall correction factor with respect to different fluid parameters are studied. It is observed that the drag force, the wall correction factor, and the flow rate are greater for the frictionless impermeable spherical container than the zero shear stress at the impermeable spherical container. Several cases of interest are deduced from the present analysis. 展开更多
关键词 micro-polar fluid permeable sphere Darcy law stream function drag force wall correction factor spherical container
下载PDF
Fundamental solutions for axi-symmetric translational motionof a microstretch fluid
19
作者 H.H.Sherief M.S.Faltas E.A.Ashmawy 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期605-611,共7页
The fundamental solution for the axi-symmetric translational motion of a microstretch fluid due to a concen- trated point body force is obtained. A general formula for the drag force exerted by the fluid on an axi-sym... The fundamental solution for the axi-symmetric translational motion of a microstretch fluid due to a concen- trated point body force is obtained. A general formula for the drag force exerted by the fluid on an axi-symmetric rigid par- ticle translating in it is then deduced. As an application to the obtained drag formula, this paper has discussed the problem of creeping translational motion of a rigid sphere in a mi- crostretch fluid. The slip boundary condition on the surface of the spherical particle is applied. The drag force and the other physical quantities are obtained and represented graph- ically for various values of the micropolarity and slip param- eters. 展开更多
关键词 Drag force Fundamental solution Mi-crostretch fluid Slip condition
下载PDF
Effect of turbulence intensity on airfoil flow:numerical simulations and experimental measurements
20
作者 李韵武 王庶 +1 位作者 王健平 米建春 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第8期1029-1038,共10页
The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consist... The effect of the turbulence intensity of the oncoming stream on the aerodynamic characteristics of the NACA-0012 airfoil is investigated by a direct numerical simulation. The numerical results are found to be consistent with the experimental measurements. Based on the finite spectral QUICK scheme, the simulation gets the high accuracy results. Both the simulation and the experiment reveal that the airfoil stall does not exist for the low turbulence intensity, however, occurs when the turbulence intensity increases sufficiently. Besides, the turbulence intensity has a significant effect on both the airfoil boundary layer and the separated shear layer. 展开更多
关键词 finite spectral method turbulence intensity boundary layer shear layer lift force drag force airfoil stall
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部