At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of ...At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%.展开更多
Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent ye...Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.展开更多
Damage caused by people and organizations unconnected with the pipeline management is a major risk faced by pipelines,and its consequences can have a huge impact.However,the present measures to monitor this have major...Damage caused by people and organizations unconnected with the pipeline management is a major risk faced by pipelines,and its consequences can have a huge impact.However,the present measures to monitor this have major problems such as time delays,overlooking threats,and false alarms.To overcome the disadvantages of these methods,analysis of big location data from mobile phone systems was applied to prevent third-party damage to pipelines,and a third-party damage prevention system was developed for pipelines including encryption mobile phone data,data preprocessing,and extraction of characteristic patterns.By applying this to natural gas pipelines,a large amount of location data was collected for data feature recognition and model analysis.Third-party illegal construction and occupation activities were discovered in a timely manner.This is important for preventing third-party damage to pipelines.展开更多
The location monitoring of underground pipelines is of utmost significance as it helps the effective management and maintenance of the pipelines,and facilitates the planning of nearby projects,preventing damage to the...The location monitoring of underground pipelines is of utmost significance as it helps the effective management and maintenance of the pipelines,and facilitates the planning of nearby projects,preventing damage to the pipelines.However,currently there is a serious lack of data on the locations of underground pipelines.This paper proposes an image-based approach for monitoring the locations of underground pipelines by combing deep learning and visual-based reconstruction.The proposed approach can build the monitoring model for underground pipelines and characterize their locations through their centroid curve.Its advantages are:(1)simplicity:it only requires time-sequential images of the inner walls of underground pipelines;(2)clarity:the location model and the location curve of underground pipelines can be provided quickly;(3)robustness:it can cope with some existing problems in underground pipelines,such as light variations and small viewing angles.A lightweight approach for monitoring the locations of underground pipelines is achieved.The proposed approach’s effectiveness has been validated through laboratory simulation experiments,demonstrating accuracy at the millimeter level.展开更多
基金supported by the three funds:Industry-University-research Project of Anhui Jianzhu University HYB20210116National Key Research and Development Project of China No.2017YFC0704100(entitled New Generation Intelligent Building Platform Techniques)Research Project of Anhui Jianzhu University jy2021-c-017(Project Name:Research and Application ofWater Distribution Network Leakage Detection System Based on DMA Partition).
文摘At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%.
基金Supported by Downhole Intelligent Measurement and Control Science and Technology Innovation Team of Southwest Petroleum University(Grant No.2018CXTD04)National Natural Science Foundation of China(Grant Nos.61701085,51974273)+1 种基金Chengdu Municipal international science and technology cooperation project of China(Grant Nos.2020-GH02-00016-HZ)2020 National Mountain Highway Engineering Technology Research Center Open Fund Project(Grant No.GSGZJ-2020-01).
文摘Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.
基金supported by Pipeline Management Data Analysis and Typical Model Research [Grant Number 2016B-3105-0501]CNPC (China National Petroleum Corporation) project, Research on Oil and Gas Pipeline Safety and Reliability Operating [Grant Number 2015-B025-0628]
文摘Damage caused by people and organizations unconnected with the pipeline management is a major risk faced by pipelines,and its consequences can have a huge impact.However,the present measures to monitor this have major problems such as time delays,overlooking threats,and false alarms.To overcome the disadvantages of these methods,analysis of big location data from mobile phone systems was applied to prevent third-party damage to pipelines,and a third-party damage prevention system was developed for pipelines including encryption mobile phone data,data preprocessing,and extraction of characteristic patterns.By applying this to natural gas pipelines,a large amount of location data was collected for data feature recognition and model analysis.Third-party illegal construction and occupation activities were discovered in a timely manner.This is important for preventing third-party damage to pipelines.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2242023K5006).
文摘The location monitoring of underground pipelines is of utmost significance as it helps the effective management and maintenance of the pipelines,and facilitates the planning of nearby projects,preventing damage to the pipelines.However,currently there is a serious lack of data on the locations of underground pipelines.This paper proposes an image-based approach for monitoring the locations of underground pipelines by combing deep learning and visual-based reconstruction.The proposed approach can build the monitoring model for underground pipelines and characterize their locations through their centroid curve.Its advantages are:(1)simplicity:it only requires time-sequential images of the inner walls of underground pipelines;(2)clarity:the location model and the location curve of underground pipelines can be provided quickly;(3)robustness:it can cope with some existing problems in underground pipelines,such as light variations and small viewing angles.A lightweight approach for monitoring the locations of underground pipelines is achieved.The proposed approach’s effectiveness has been validated through laboratory simulation experiments,demonstrating accuracy at the millimeter level.