Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mizati...Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.展开更多
The paper discusses a new drawing technology, based on a synchronized movement of ram and cushion with multiple bending operations in alternating directions called "bi-directional deep drawing(BDD)." The goal is t...The paper discusses a new drawing technology, based on a synchronized movement of ram and cushion with multiple bending operations in alternating directions called "bi-directional deep drawing(BDD)." The goal is to avoid local thinning by strengthening the weak point using local hardening. BDD operations are realized before the conventional deep drawing process. This results in a local strain hardening at the weak point of the workpiece, which is usually located at the bottom punch radius. Two major aspects have to be given attention due to the high number of process parameters. On the one hand, for process design, it is helpful to have a tool by means of which it is possible to simultaneously create both the machine program for the servo press and the initial configuration for the process simulation. From the authors' point of view, this complexity can only be represented by a numerical analysis method, on the other hand. Consequently, both aspects are given attention in this paper.展开更多
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2015ZX04003004)
文摘Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.
基金financed by the ‘‘Arbeitsgemeinschaft industrieller Forschungsvereinigungen-Otto von Guericke e. V.’’ (AiF) as part of the program to support ‘‘Industrial Community Research and Development’’ (IGF) with funds from the ‘‘Federal Ministry for Economic Affairs and Energy’’ (BMWi) following an order by the German Federal Parliament
文摘The paper discusses a new drawing technology, based on a synchronized movement of ram and cushion with multiple bending operations in alternating directions called "bi-directional deep drawing(BDD)." The goal is to avoid local thinning by strengthening the weak point using local hardening. BDD operations are realized before the conventional deep drawing process. This results in a local strain hardening at the weak point of the workpiece, which is usually located at the bottom punch radius. Two major aspects have to be given attention due to the high number of process parameters. On the one hand, for process design, it is helpful to have a tool by means of which it is possible to simultaneously create both the machine program for the servo press and the initial configuration for the process simulation. From the authors' point of view, this complexity can only be represented by a numerical analysis method, on the other hand. Consequently, both aspects are given attention in this paper.