Zebra mussels <em>Dreissena polymorpha </em>are a native bivalve from eastern Europe. They were first detected in North America in Lake St. Clair in 1988 and were presumably introduced via infested ballast...Zebra mussels <em>Dreissena polymorpha </em>are a native bivalve from eastern Europe. They were first detected in North America in Lake St. Clair in 1988 and were presumably introduced via infested ballast water. Zebra mussels have spread rapidly across the United States, with 31 states reporting infestations as of 2019. Zebra mussels were first detected in South Dakota, USA, in 2015 in Lewis and Clark Lake and McCook Lake, with subsequent infestations occurring in Lake Yankton in 2017, Lakes Francis Case and Sharpe in 2019, and Pickerel Lake, Kampeska Lake, and Lake Cochrane in 2020. This review paper presents information on zebra mussel biology and control, with specific information on the waters of South Dakota, USA.展开更多
Several treatment options have been developed to minimize the spread of zebra mussel Dreissena polymorphaveligers (larvae) during fish transportation. However, the effect of these treatments on the survival of newly-f...Several treatment options have been developed to minimize the spread of zebra mussel Dreissena polymorphaveligers (larvae) during fish transportation. However, the effect of these treatments on the survival of newly-fertilized salmonid eggs has not been evaluated. This study examined the survival of water-hardened landlocked fall Chinook salmon Oncorhynchus tshawytscha eggs after one of four different treatments: 1) Control (no chemicals), 2) 100 mg/L formalin for two hours, 3) 750 mg/L of potassium chloride for one hour followed by 20 mg/L formalin for two hours, and 4) 750 mg/L of potassium chloride for one hour followed by 20 mg/L formalin for three hours. The 100 mg/L formalin treatment produced complete egg mortality. Survival to hatch was not significantly different among the other three treatments. Based on these results, the use of 750 mg/L potassium chloride for one hour followed by 20 mg/L formalin for three hours is recommended when moving Chinook salmon eggs from waters potentially infested with zebra mussels to hatcheries for incubation.展开更多
Zebra mussel Dreissena polymorpha is a Ponto-Caspian species invasive in Europe and North America, with great environmental impact. It lives byssally attached to hard substrata in large aggregations, which is often ex...Zebra mussel Dreissena polymorpha is a Ponto-Caspian species invasive in Europe and North America, with great environmental impact. It lives byssally attached to hard substrata in large aggregations, which is often explained by its preferences for conspecifics, though direct evidence for such preferences has been rather limited so far. We studied the reactions of zebra mussels to con- specifics, hypothesizing that they may either be attracted to one another or form aggregations only in the absence of alternative attachment sites, in Experiment 1, we tested mussel tendency to detach from existing druses depending on druse size (2-25 individuals) and substratum type (soft: sand; hard: glass). Mussels detached significantly more often on the hard substratum and from larger druses compared to soft substratum and smaller druses, respectively. This indicates that mussels tended to avoid conspecifics at high density, particularly when alternative substratum was available. In Experiment 2, we tested the responses of single mussels to distant (3 or 15cm) conspecifics (0, 3, 15 individuals per 2.51 tank) on the sandy substratum. The presence of conspecifics, regardless of their distance and density, resulted in single unattached mussels staying more often in their initial positions. Mussels did not move preferentially towards or away from the conspecifics. Thus, even on unsuitable substratum mussels were not attracted by conspecifics and probably exhibited an avoidance reaction by reducing their movement. This suggests that dense mussel aggregations are formed due to the lack of available alternative attachment sites rather than due to their preferences for conspecifics.展开更多
文摘Zebra mussels <em>Dreissena polymorpha </em>are a native bivalve from eastern Europe. They were first detected in North America in Lake St. Clair in 1988 and were presumably introduced via infested ballast water. Zebra mussels have spread rapidly across the United States, with 31 states reporting infestations as of 2019. Zebra mussels were first detected in South Dakota, USA, in 2015 in Lewis and Clark Lake and McCook Lake, with subsequent infestations occurring in Lake Yankton in 2017, Lakes Francis Case and Sharpe in 2019, and Pickerel Lake, Kampeska Lake, and Lake Cochrane in 2020. This review paper presents information on zebra mussel biology and control, with specific information on the waters of South Dakota, USA.
文摘Several treatment options have been developed to minimize the spread of zebra mussel Dreissena polymorphaveligers (larvae) during fish transportation. However, the effect of these treatments on the survival of newly-fertilized salmonid eggs has not been evaluated. This study examined the survival of water-hardened landlocked fall Chinook salmon Oncorhynchus tshawytscha eggs after one of four different treatments: 1) Control (no chemicals), 2) 100 mg/L formalin for two hours, 3) 750 mg/L of potassium chloride for one hour followed by 20 mg/L formalin for two hours, and 4) 750 mg/L of potassium chloride for one hour followed by 20 mg/L formalin for three hours. The 100 mg/L formalin treatment produced complete egg mortality. Survival to hatch was not significantly different among the other three treatments. Based on these results, the use of 750 mg/L potassium chloride for one hour followed by 20 mg/L formalin for three hours is recommended when moving Chinook salmon eggs from waters potentially infested with zebra mussels to hatcheries for incubation.
文摘Zebra mussel Dreissena polymorpha is a Ponto-Caspian species invasive in Europe and North America, with great environmental impact. It lives byssally attached to hard substrata in large aggregations, which is often explained by its preferences for conspecifics, though direct evidence for such preferences has been rather limited so far. We studied the reactions of zebra mussels to con- specifics, hypothesizing that they may either be attracted to one another or form aggregations only in the absence of alternative attachment sites, in Experiment 1, we tested mussel tendency to detach from existing druses depending on druse size (2-25 individuals) and substratum type (soft: sand; hard: glass). Mussels detached significantly more often on the hard substratum and from larger druses compared to soft substratum and smaller druses, respectively. This indicates that mussels tended to avoid conspecifics at high density, particularly when alternative substratum was available. In Experiment 2, we tested the responses of single mussels to distant (3 or 15cm) conspecifics (0, 3, 15 individuals per 2.51 tank) on the sandy substratum. The presence of conspecifics, regardless of their distance and density, resulted in single unattached mussels staying more often in their initial positions. Mussels did not move preferentially towards or away from the conspecifics. Thus, even on unsuitable substratum mussels were not attracted by conspecifics and probably exhibited an avoidance reaction by reducing their movement. This suggests that dense mussel aggregations are formed due to the lack of available alternative attachment sites rather than due to their preferences for conspecifics.