Vehicles involved in traffic accidents generally experience divergent vehicle motion,which causes severe damage.This paper presents a self-learning drift-control method for the purpose of stabilizing a vehicle’s yaw ...Vehicles involved in traffic accidents generally experience divergent vehicle motion,which causes severe damage.This paper presents a self-learning drift-control method for the purpose of stabilizing a vehicle’s yaw motions after a high-speed rear-end collision.The struck vehicle generally experiences substantial drifting and/or spinning after the collision,which is beyond the handling limit and difficult to control.Drift control of the struck vehicle along the original lane was investigated.The rear-end collision was treated as a set of impact forces,and the three-dimensional non-linear dynamic responses of the vehicle were considered in the drift control.A multi-layer perception neural network was trained as a deterministic control policy using the actor-critic reinforcement learning framework.The control policy was iteratively updated,initiating from a random parameterized policy.The results show that the self-learning controller gained the ability to eliminate unstable vehicle motion after data-driven training of about 60,000 iterations.The controlled struck vehicle was also able to drift back to its original lane in a variety of rear-end collision scenarios,which could significantly reduce the risk of a second collision in traffic.展开更多
The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this a...The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control, critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.展开更多
The frequent change in ice drift direction poses a significant challenge for turret moored ship in ice. Variability in ice drift is mainly caused by the winds and currents. To solve this problem, a new method with num...The frequent change in ice drift direction poses a significant challenge for turret moored ship in ice. Variability in ice drift is mainly caused by the winds and currents. To solve this problem, a new method with numerical simulation based on heading control is applied to reduce the risk of operation of The Arctic Tandem Offloading Terminal(ATOT),which includes an offloading icebreaker(OIB) moored to a submerged turret and a shuttle tanker moored at the stern of the OIB in this paper. An icebreaking tanker, MT Uikku, was modeled in a simulation program. Then the level ice load on the tanker was calculated with different ice thicknesses and drift speeds, after which a heading controller assisted with mooring system is used to simulate the horizontal motion of the tanker under the ice action.展开更多
This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
Magnetic sensorless sensing and control experiments with the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made to focus on the ripple frequency component of the ...Magnetic sensorless sensing and control experiments with the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made to focus on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem with the integrator of wagnetic sensors. Two kinds of control experiments have been carried out: to keep the position constant and swing the position in a triangular waveform, And magnetic sensorless sensing of plasma shape is discussed.展开更多
The control of turbulence at tokamaks is very complex problem.The idea is to apply the fuzzy Markovian processes and fuzzy Brownian motions as good approximation of general robust drift kinetic equation. It is obtaine...The control of turbulence at tokamaks is very complex problem.The idea is to apply the fuzzy Markovian processes and fuzzy Brownian motions as good approximation of general robust drift kinetic equation. It is obtained by using the artificial neural networks for solving of appropriate advanced control problem. The proof of the appropriate theorem is shown.展开更多
This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed ...This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed with respect to the existing ones that is able to determine the locations and the magnitude of weakening and/or softening of structural elements and adding damping while insuring structural stability. An optimal polynomial controller that is a summation of polynomials in nonlinear states is used in Phase I of the method to reduce the peak response quantities of seismically excited nonlinear or hysteretic systems. The main advantage of the optimal polynomial controller is that it is able to automatically stabilize the structural system. The optimal design of a shear-type structure is used as an example to illustrate the feasibility of the proposed approach, which leads to a reduction of both peak inter-story drifts and peak total accelerations.展开更多
Drift parking usually requires precise control of a vehicle by a professional driver,which can reflect the performance of the vehicle under critical conditions.The obstacles to implementing this action include the hig...Drift parking usually requires precise control of a vehicle by a professional driver,which can reflect the performance of the vehicle under critical conditions.The obstacles to implementing this action include the high coupling between the longitudinal and lateral states,the high precision required for the vehicle initial state when the drift is triggered,and the difficulty in determining the reference state variables in the drift process.A two-segment drift parking control system is proposed in this paper.In the approaching control segment,the vehicle achieves the drift-triggered vehicle speed and pose,which relies on a pathtracking algorithm based on linear time-varying model predictive control.In the drifting control segment,the deep reinforcement learning algorithm twin-delayed deep deterministic policy gradient is creatively introduced to the controller design.It solves the precise vehicle motion control problem under the condition of the rear wheels having locked brakes.Through various simulations,the superiority and robustness to different initial conditions and abrupt changes in the parking space are verified.The effectiveness of the proposed control system is verified by a ground test.展开更多
基金supported by International Science&Technology Cooperation Program of China(Grant No.2019YFE0100200)the National Natural Science Foundation of China(Grant No.51905483).This paper is also partially supported by Toyota.
文摘Vehicles involved in traffic accidents generally experience divergent vehicle motion,which causes severe damage.This paper presents a self-learning drift-control method for the purpose of stabilizing a vehicle’s yaw motions after a high-speed rear-end collision.The struck vehicle generally experiences substantial drifting and/or spinning after the collision,which is beyond the handling limit and difficult to control.Drift control of the struck vehicle along the original lane was investigated.The rear-end collision was treated as a set of impact forces,and the three-dimensional non-linear dynamic responses of the vehicle were considered in the drift control.A multi-layer perception neural network was trained as a deterministic control policy using the actor-critic reinforcement learning framework.The control policy was iteratively updated,initiating from a random parameterized policy.The results show that the self-learning controller gained the ability to eliminate unstable vehicle motion after data-driven training of about 60,000 iterations.The controlled struck vehicle was also able to drift back to its original lane in a variety of rear-end collision scenarios,which could significantly reduce the risk of a second collision in traffic.
文摘The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control, critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.
文摘The frequent change in ice drift direction poses a significant challenge for turret moored ship in ice. Variability in ice drift is mainly caused by the winds and currents. To solve this problem, a new method with numerical simulation based on heading control is applied to reduce the risk of operation of The Arctic Tandem Offloading Terminal(ATOT),which includes an offloading icebreaker(OIB) moored to a submerged turret and a shuttle tanker moored at the stern of the OIB in this paper. An icebreaking tanker, MT Uikku, was modeled in a simulation program. Then the level ice load on the tanker was calculated with different ice thicknesses and drift speeds, after which a heading controller assisted with mooring system is used to simulate the horizontal motion of the tanker under the ice action.
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Magnetic sensorless sensing and control experiments with the plasma horizontal position have been carried out in the superconducting tokamak HT-7. The sensing is made to focus on the ripple frequency component of the power supply with thyristor and directly from them without time integration. There is no drift problem with the integrator of wagnetic sensors. Two kinds of control experiments have been carried out: to keep the position constant and swing the position in a triangular waveform, And magnetic sensorless sensing of plasma shape is discussed.
文摘The control of turbulence at tokamaks is very complex problem.The idea is to apply the fuzzy Markovian processes and fuzzy Brownian motions as good approximation of general robust drift kinetic equation. It is obtained by using the artificial neural networks for solving of appropriate advanced control problem. The proof of the appropriate theorem is shown.
文摘This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed with respect to the existing ones that is able to determine the locations and the magnitude of weakening and/or softening of structural elements and adding damping while insuring structural stability. An optimal polynomial controller that is a summation of polynomials in nonlinear states is used in Phase I of the method to reduce the peak response quantities of seismically excited nonlinear or hysteretic systems. The main advantage of the optimal polynomial controller is that it is able to automatically stabilize the structural system. The optimal design of a shear-type structure is used as an example to illustrate the feasibility of the proposed approach, which leads to a reduction of both peak inter-story drifts and peak total accelerations.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2501201)the National Natural Science Foundation of China(Grant No.52002284)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Grant No.2021QNRC001)。
文摘Drift parking usually requires precise control of a vehicle by a professional driver,which can reflect the performance of the vehicle under critical conditions.The obstacles to implementing this action include the high coupling between the longitudinal and lateral states,the high precision required for the vehicle initial state when the drift is triggered,and the difficulty in determining the reference state variables in the drift process.A two-segment drift parking control system is proposed in this paper.In the approaching control segment,the vehicle achieves the drift-triggered vehicle speed and pose,which relies on a pathtracking algorithm based on linear time-varying model predictive control.In the drifting control segment,the deep reinforcement learning algorithm twin-delayed deep deterministic policy gradient is creatively introduced to the controller design.It solves the precise vehicle motion control problem under the condition of the rear wheels having locked brakes.Through various simulations,the superiority and robustness to different initial conditions and abrupt changes in the parking space are verified.The effectiveness of the proposed control system is verified by a ground test.