Accurate determination of hydraulic parameters such as pressure losses, equivalent circulation density (ECD), etc. plays profound roles in drilling, cementing and other well operations. Hydraulics characterization req...Accurate determination of hydraulic parameters such as pressure losses, equivalent circulation density (ECD), etc. plays profound roles in drilling, cementing and other well operations. Hydraulics characterization requires that all factors are considered as the neglect of any could become potential sources of errors that would be detrimental to the overall well operation. Drilling Hydraulics has been extensively treated in the literature. However, these works almost entirely rely on the assumption that the drill string lies perfectly at the center of the annulus—the so-called “concentric annulus”. In reality, concentricity is almost never achieved even when centralizers are used. This is because of high well inclination angles and different string geometries. Thus, eccentricity exists in practical oil and gas wells especially horizontal and extended reach wells (ERWs) and must be accounted for. The prevalence of drillstring (DS) eccentricity in the annulus calls for a re-evaluation of existing hydraulic models. This study evaluates the effect of drilling fluid rheology types and DS eccentricity on the entire drilling hydraulics. Three non-Newtonian fluid models were analyzed, viz: Herschel Bulkley, power law and Bingham plastic models. From the results, it was observed that while power law and Bingham plastic models gave the upper and lower hydraulic values, Herschel Bulkley fluid model gave annular pressure loss (APL) and ECD values that fall between the upper and lower values and provide a better fit to the hydraulic data than power law and Bingham plastic fluids. Furthermore, analysis of annular eccentricity reveals that APLs and ECD decrease with an increase in DS eccentricity. Pressure loss reduction of more than 50% was predicted for the fully eccentric case for Herschel Bulkley fluids. Thus, DS eccentricity must be fully considered during well planning and hydraulics designs.展开更多
The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined functi...The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined function embedded.The rotation angular velocities before and after the critical rotation angular velocity were used as independent variables,and the reduced velocity range was 3-14.Fluid-structure coupling was realized based on the dynamic overset grid and the SST k-ωturbulence model.Results reveal that the dynamic response of the riserless drill string was considerably affected by rotation and flow velocity,which are coupled with each other.The cross-flow average dimensionless displacement increased with the rotation angular velocity,and rotation considerably enhanced the in-line maximum average dimensionless displacement.However,the cross-flow amplitude caused by vortex-induced vibration was suppressed when the rotation angular velocity reached a certain value.The in-line and cross-flow frequencies were the same,thereby causing the trajectory to deviate from the standard'figure-eight'shape and become a closed circle shape.The vortex did not fall behind the cylinder at low reduced velocity with high-rotation angular velocity,and the structure of the near-wake vortex remained U-shaped.The wake of the cylinder was deflected along the cross-flow direction,thereby leading to vibration asymmetry and resulting in increased vibration instability and disordered vibration trajectories,especially at high-rotation angular velocities.展开更多
In drilling field, stick-slip vibrations of the drill-string are the main reason for the failure of the drilling system. To suppress the undesired stick-slip vibrations, an observer-based state feedback control method...In drilling field, stick-slip vibrations of the drill-string are the main reason for the failure of the drilling system. To suppress the undesired stick-slip vibrations, an observer-based state feedback control method is proposed. The drilling system is described by a lumped parameter model including a Karnopp friction torque model. A state observer is designed to estimate the bit velocity in bottom hole and a state feedback controller is proposed to control the top drive velocity. By simulation, the performance of the control algorithm is demonstrated. Based on the control algorithm, a stick-slip vibration control system is developed. Test results show that the control system can effectively eliminate stick-slip vibrations of the drill-string and can be applied to the drilling field.展开更多
Drilling fluid is an important construction technique in the drilling engineering.However,because of the influence of present situation of domestic drilling geological,drilling fluid has not yet been paid sufficient a...Drilling fluid is an important construction technique in the drilling engineering.However,because of the influence of present situation of domestic drilling geological,drilling fluid has not yet been paid sufficient attention.During the construction process,there is not enough professional personnel and apparatus,the fluid recipes are in mess,and they can’t meet different kinds of formations,which cause that the efficiency of the drilling work is low and accidents in the hole happens frequently.This passage which is based on the characteristics and principles of quality control in each section of drilling fluid studies on the quality control,the system composition and how to ensure quality in details.It is also hoped to have the certain value and significance for the future quality control of drilling fluid.展开更多
A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and ...A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and a rigid cylindrical channel, is conveyed upwards inside the pipe. This configuration thus resembles of a pipe that aspirating fluid. The equation of planar mo- tion is solved by means of the differential quadrature method (DQM). Calculations are conducted for a slender drill-string-like and a bench-top-size system, for different confinement conditions of the outer annular channel. It is shown that the vibrations of these two systems are closely related to the degree of confinement of the outer annular channel. For a drill-string-like system with narrow annuli, buckling instability may occur in the second and third modes. For a bench-top-size system, however, both buckling and flutter may occur in the lowest three modes. The form of instability depends on the annuli size.展开更多
Acoustic telemetry along the drill string helps to know the physical and chemical characteristics of the formation and drilling fluid.A time-domain algorithm is developed for the propagation of one-dimensional axial s...Acoustic telemetry along the drill string helps to know the physical and chemical characteristics of the formation and drilling fluid.A time-domain algorithm is developed for the propagation of one-dimensional axial stress waves with the inner and outer viscous fluid.The algorithm simulates the passbands,stopbands and spikes due to the presence of the discontinuous boundaries of drill string.Then the effects of transmitted pulses and transceivers on acoustic transmission are analysed.The simulated results show that the raised cosine pulses and optimal placements of transceivers improve system performance.Moreover,dual PZT receivers can exclude signals propagating in a direction opposite to the transmitted signals. It is obvious that the uses of the available modeling and signal processing techniques can make the drill string as a waveguide for transmitting information at high data rates.展开更多
In drilling a deepwater well,the mud density window is narrow,which needs a precise pressure control to drill the well to its designed depth.Therefore,an accurate characterization of annular flow between the drilling ...In drilling a deepwater well,the mud density window is narrow,which needs a precise pressure control to drill the well to its designed depth.Therefore,an accurate characterization of annular flow between the drilling riser and drilling string is critical in well control and drilling safety.Many other factors influencing the change of drilling pressure that should be but have not been studied sufficiently.We used numerical method to simulate the process of drill string rotation and vibration in the riser to show that the rotation and transverse vibration of drill string can increase the axial velocity in the annulus,which results in the improvement of the flow field in the annulus,and the effect on pressure loss and its fluctuation amplitude.In addition,there are also multiple secondary flow vortices in the riser annulus under certain eccentricity conditions,which is different from the phenomenon in an ordinary wellbore.The findings of this research are critical in safely controlling well drilling operation in the deepwater environment.展开更多
How to find more effective way to stabilize the borehole wall in the fault gouge section is the key technical challenge to control the stability of the borehole wall in the Wenchuan fault gouge section during the proc...How to find more effective way to stabilize the borehole wall in the fault gouge section is the key technical challenge to control the stability of the borehole wall in the Wenchuan fault gouge section during the process of core drilling. Here we try to describe the characters of deep fault gouge in fracture zones from the undisturbed fault gouge samples which are obtained during the core drilling. The X- Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) provided the detailed information of the fault gouge's microscopic characteristics on the density, moisture content, expansibility, dispersity, permeability, tensile strength and other main physical-mechanical properties. Based on these systematic experimental studies above and analysis of the fault gouge instability mechanism, a new technical procedure to stabilize the borehole wall is proposed -- a low water and a low loss low permeability drilling fluid system that consists of 4% day + 0.5% CMC-HV + 2% S-1 + 3%sulfonated asphalt + 1% SMC + 0.5% X-1 + 0-5% T type lubricant + barite for core drilling in fault gouge sections.展开更多
文摘Accurate determination of hydraulic parameters such as pressure losses, equivalent circulation density (ECD), etc. plays profound roles in drilling, cementing and other well operations. Hydraulics characterization requires that all factors are considered as the neglect of any could become potential sources of errors that would be detrimental to the overall well operation. Drilling Hydraulics has been extensively treated in the literature. However, these works almost entirely rely on the assumption that the drill string lies perfectly at the center of the annulus—the so-called “concentric annulus”. In reality, concentricity is almost never achieved even when centralizers are used. This is because of high well inclination angles and different string geometries. Thus, eccentricity exists in practical oil and gas wells especially horizontal and extended reach wells (ERWs) and must be accounted for. The prevalence of drillstring (DS) eccentricity in the annulus calls for a re-evaluation of existing hydraulic models. This study evaluates the effect of drilling fluid rheology types and DS eccentricity on the entire drilling hydraulics. Three non-Newtonian fluid models were analyzed, viz: Herschel Bulkley, power law and Bingham plastic models. From the results, it was observed that while power law and Bingham plastic models gave the upper and lower hydraulic values, Herschel Bulkley fluid model gave annular pressure loss (APL) and ECD values that fall between the upper and lower values and provide a better fit to the hydraulic data than power law and Bingham plastic fluids. Furthermore, analysis of annular eccentricity reveals that APLs and ECD decrease with an increase in DS eccentricity. Pressure loss reduction of more than 50% was predicted for the fully eccentric case for Herschel Bulkley fluids. Thus, DS eccentricity must be fully considered during well planning and hydraulics designs.
基金supported by the National Natural Science Foundation of China(No.U2006226)the National Key Research and Development Program of China(No.2016YFC0303800)。
文摘The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined function embedded.The rotation angular velocities before and after the critical rotation angular velocity were used as independent variables,and the reduced velocity range was 3-14.Fluid-structure coupling was realized based on the dynamic overset grid and the SST k-ωturbulence model.Results reveal that the dynamic response of the riserless drill string was considerably affected by rotation and flow velocity,which are coupled with each other.The cross-flow average dimensionless displacement increased with the rotation angular velocity,and rotation considerably enhanced the in-line maximum average dimensionless displacement.However,the cross-flow amplitude caused by vortex-induced vibration was suppressed when the rotation angular velocity reached a certain value.The in-line and cross-flow frequencies were the same,thereby causing the trajectory to deviate from the standard'figure-eight'shape and become a closed circle shape.The vortex did not fall behind the cylinder at low reduced velocity with high-rotation angular velocity,and the structure of the near-wake vortex remained U-shaped.The wake of the cylinder was deflected along the cross-flow direction,thereby leading to vibration asymmetry and resulting in increased vibration instability and disordered vibration trajectories,especially at high-rotation angular velocities.
文摘In drilling field, stick-slip vibrations of the drill-string are the main reason for the failure of the drilling system. To suppress the undesired stick-slip vibrations, an observer-based state feedback control method is proposed. The drilling system is described by a lumped parameter model including a Karnopp friction torque model. A state observer is designed to estimate the bit velocity in bottom hole and a state feedback controller is proposed to control the top drive velocity. By simulation, the performance of the control algorithm is demonstrated. Based on the control algorithm, a stick-slip vibration control system is developed. Test results show that the control system can effectively eliminate stick-slip vibrations of the drill-string and can be applied to the drilling field.
文摘Drilling fluid is an important construction technique in the drilling engineering.However,because of the influence of present situation of domestic drilling geological,drilling fluid has not yet been paid sufficient attention.During the construction process,there is not enough professional personnel and apparatus,the fluid recipes are in mess,and they can’t meet different kinds of formations,which cause that the efficiency of the drilling work is low and accidents in the hole happens frequently.This passage which is based on the characteristics and principles of quality control in each section of drilling fluid studies on the quality control,the system composition and how to ensure quality in details.It is also hoped to have the certain value and significance for the future quality control of drilling fluid.
基金supported by the National Natural Science Foundation of China (Nos. 10772071 and 10802031)theScientific Research Foundation of HUST (No. 2006Q003B).
文摘A theoretical model is developed for the vibration and stability of a vertical pipe subjected concurrently to two dependent axial flows. The external fluid, after exiting the outer annular region between the pipe and a rigid cylindrical channel, is conveyed upwards inside the pipe. This configuration thus resembles of a pipe that aspirating fluid. The equation of planar mo- tion is solved by means of the differential quadrature method (DQM). Calculations are conducted for a slender drill-string-like and a bench-top-size system, for different confinement conditions of the outer annular channel. It is shown that the vibrations of these two systems are closely related to the degree of confinement of the outer annular channel. For a drill-string-like system with narrow annuli, buckling instability may occur in the second and third modes. For a bench-top-size system, however, both buckling and flutter may occur in the lowest three modes. The form of instability depends on the annuli size.
文摘Acoustic telemetry along the drill string helps to know the physical and chemical characteristics of the formation and drilling fluid.A time-domain algorithm is developed for the propagation of one-dimensional axial stress waves with the inner and outer viscous fluid.The algorithm simulates the passbands,stopbands and spikes due to the presence of the discontinuous boundaries of drill string.Then the effects of transmitted pulses and transceivers on acoustic transmission are analysed.The simulated results show that the raised cosine pulses and optimal placements of transceivers improve system performance.Moreover,dual PZT receivers can exclude signals propagating in a direction opposite to the transmitted signals. It is obvious that the uses of the available modeling and signal processing techniques can make the drill string as a waveguide for transmitting information at high data rates.
基金The research work in this paper is supported by the National Natural Science Foundation of China(Grant No.U1762211)National Key Technologies R&D Program of China(Grant No.2016ZX05022-005),This research is also partially supported by Tubular Goods Research Institute of CNPC and State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Material of China National Petroleum Corporation.
文摘In drilling a deepwater well,the mud density window is narrow,which needs a precise pressure control to drill the well to its designed depth.Therefore,an accurate characterization of annular flow between the drilling riser and drilling string is critical in well control and drilling safety.Many other factors influencing the change of drilling pressure that should be but have not been studied sufficiently.We used numerical method to simulate the process of drill string rotation and vibration in the riser to show that the rotation and transverse vibration of drill string can increase the axial velocity in the annulus,which results in the improvement of the flow field in the annulus,and the effect on pressure loss and its fluctuation amplitude.In addition,there are also multiple secondary flow vortices in the riser annulus under certain eccentricity conditions,which is different from the phenomenon in an ordinary wellbore.The findings of this research are critical in safely controlling well drilling operation in the deepwater environment.
基金supported by the Land&Resources Ministry of China,the China Geological Survey and the research institute of prospecting technology in the Chinese Academy of Geological Sciences,sincere thanks heresupported by National Natural Science Foundation of China(Grant Nos.41272331,51204027)the State Key Laboratory of Geohazard Prevention&Geoenvironment Protection(Grant Nos.SKLGP2012Z007,SKLGP2014Z001,SKLGP2015Z010)
文摘How to find more effective way to stabilize the borehole wall in the fault gouge section is the key technical challenge to control the stability of the borehole wall in the Wenchuan fault gouge section during the process of core drilling. Here we try to describe the characters of deep fault gouge in fracture zones from the undisturbed fault gouge samples which are obtained during the core drilling. The X- Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) provided the detailed information of the fault gouge's microscopic characteristics on the density, moisture content, expansibility, dispersity, permeability, tensile strength and other main physical-mechanical properties. Based on these systematic experimental studies above and analysis of the fault gouge instability mechanism, a new technical procedure to stabilize the borehole wall is proposed -- a low water and a low loss low permeability drilling fluid system that consists of 4% day + 0.5% CMC-HV + 2% S-1 + 3%sulfonated asphalt + 1% SMC + 0.5% X-1 + 0-5% T type lubricant + barite for core drilling in fault gouge sections.