For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantag...For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.展开更多
We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). ...We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the multi- sphere method for a range of fluid inlet velocities and drill pipe inclination angles. The simulations are carried out for laboratory-scale drilling configurations. Our results demonstrate good agreement with published experimental data. We evaluate the fluid-particle flow patterns, the particle velocities, and the particle concentration profiles. The results reveal that particle sphericity plays a major role in the fluid-solid interaction. The traditional assumption of an ideal spherical particle may cause inaccurate results.展开更多
The long and large diameter uncharged hole boring(LLB)method is a cut blasting method that minimizes blast-induced vibrations by creating long and large diameter uncharged holes at the excavation face of tunnels prior...The long and large diameter uncharged hole boring(LLB)method is a cut blasting method that minimizes blast-induced vibrations by creating long and large diameter uncharged holes at the excavation face of tunnels prior to tunnel excavation.Drilling in this method typically uses a 50 m long with a 382 mm diameter hammer bit in the horizontal direction at the tunnel face.However,the significant weight and uni-directional rotation of the rod head,as well as variables such as geological characteristics,machine conditions,and inexperienced operators result in significant deviation from the target borehole alignment that hinders the vibration-dampening effect of the uncharged holes.Furthermore,since there is no method to verify the alignment of the boreholes until main tunnel construction,borehole misalignment is often not discovered until weeks after construction,which requires tunnel construction to cease until the equipment can be remobilized and an additional borehole be created,causing significant delays and increased costs for the entire tunnel project.In this study,the borehole alignment tracking and ground exploration system(BGS)is developed to predict and monitor the quality and alignment of boreholes for cut blasting methods such as the LLB methods immediately after boring.The BGS was subsequently tested at a subway construction site to evaluate its performance in the field.The measurements yielded by the BGS were compared with manually measured boring positions at every 5 m along the borehole.Although the BGS showed a maximum deviation of approximately 12%at a local point where the hole surface was relatively rough,the accuracy for the final boring position was approximately 97%,demonstrating excellent precision of the alignment tracking system.The BGS demonstrates excellent performance in predicting ground conditions and the boring quality of a cut hole immediately after drilling,and shows promise in various other applications for monitoring borehole alignment.展开更多
基金Project(BK2012812)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51079053)supported by the National Natural Science Foundation of China+2 种基金Project(KYLX_0493)supported by the Scientific Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2014B38814)supported by the Fundamental Research Funds for Central Universities,ChinaProject(2014.1526)supported by the Open Research Fund Program of Key Laboratory of Geological Information of Ministry of Land and Resources,China
文摘For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.
文摘We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the multi- sphere method for a range of fluid inlet velocities and drill pipe inclination angles. The simulations are carried out for laboratory-scale drilling configurations. Our results demonstrate good agreement with published experimental data. We evaluate the fluid-particle flow patterns, the particle velocities, and the particle concentration profiles. The results reveal that particle sphericity plays a major role in the fluid-solid interaction. The traditional assumption of an ideal spherical particle may cause inaccurate results.
基金supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport,South Korea(Grant No.22UUTI-C157786-03).
文摘The long and large diameter uncharged hole boring(LLB)method is a cut blasting method that minimizes blast-induced vibrations by creating long and large diameter uncharged holes at the excavation face of tunnels prior to tunnel excavation.Drilling in this method typically uses a 50 m long with a 382 mm diameter hammer bit in the horizontal direction at the tunnel face.However,the significant weight and uni-directional rotation of the rod head,as well as variables such as geological characteristics,machine conditions,and inexperienced operators result in significant deviation from the target borehole alignment that hinders the vibration-dampening effect of the uncharged holes.Furthermore,since there is no method to verify the alignment of the boreholes until main tunnel construction,borehole misalignment is often not discovered until weeks after construction,which requires tunnel construction to cease until the equipment can be remobilized and an additional borehole be created,causing significant delays and increased costs for the entire tunnel project.In this study,the borehole alignment tracking and ground exploration system(BGS)is developed to predict and monitor the quality and alignment of boreholes for cut blasting methods such as the LLB methods immediately after boring.The BGS was subsequently tested at a subway construction site to evaluate its performance in the field.The measurements yielded by the BGS were compared with manually measured boring positions at every 5 m along the borehole.Although the BGS showed a maximum deviation of approximately 12%at a local point where the hole surface was relatively rough,the accuracy for the final boring position was approximately 97%,demonstrating excellent precision of the alignment tracking system.The BGS demonstrates excellent performance in predicting ground conditions and the boring quality of a cut hole immediately after drilling,and shows promise in various other applications for monitoring borehole alignment.