A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling param...A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling parameters were discussed. The nitrogen chamber in the sampling cylinder functions as an energy storage air cushion, which can supplement the pressure loss caused by temperature change in the sampling process to some extent. The downhole pressurization is to press the sample into the sample chamber as soon as possible, and further increase the pressure of sample to make up for the pressure that the nitrogen chamber cannot provide. Through the analysis of working mode of the sampling fidelity cylinder, the non-ideal gas state equation was used to deduce and calculate the optimal values of fidelity parameters such as pre-charged nitrogen pressure, downhole pressurization amount and sampling volume according to whether the bubble point pressure of the sampling fluid was known and on-site emergency sampling situation. Besides, the influences of ground temperature on fidelity parameters were analyzed, and corresponding correction methods were put forward. The research shows that the fidelity sampling cylinder while drilling can effectively improve the fidelity of the sample. When the formation fluid sample reaches the surface, it can basically ensure that the sample does not change in physical phase state and keeps the same chemical components in the underground formation.展开更多
Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud...Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud invasion has just started, mudcake has not formed entirely and the formation pressure is not stable. Therefore, it is important to study the influence of the downhole dynamic environment on pressure testing and fluid sampling. This paper applies an oil-water two phase finite element model to study the influence of mudcake quality and mud filtrate invasion on supercharge pressure, pretest and sampling in the reservoirs of different permeability. However, the study is only for the cases with water based mud in the wellbore. The results illustrate that the mudcake quality has a significant influence on the supercharge pressure and fluid sampling, while the level of mud filtrate invasion has a strong impact on pressure testing and sampling. In addition, in-situ formation pressure testing is more difficult in low permeability reservoirs as the mud filtrate invasion is deeper and therefore degrades the quality of fluid sampling. Finally, a field example from an oil field on the Alaskan North Slope is presented to validate the numerical studies of the effects of downhole dynamic conditions on formation testing while drilling.展开更多
Fluorescent additives can reduce drilling operation risks, especially during high angle deviated well drilling and when managing stuck pipe problems. However, they can affect oil discovery and there is a need to reduc...Fluorescent additives can reduce drilling operation risks, especially during high angle deviated well drilling and when managing stuck pipe problems. However, they can affect oil discovery and there is a need to reduce the level of fluorescents or change the drilling fluids to prevent loss of drilling velocity and efficiency. In this paper, based on the analysis of drilling fluids by NMR with high sensitivity, solid and liquid additives have been analyzed under conditions with different fluorescent levels and temperatures. The results show that all of the solid additives have no NMR signal, and therefore cannot affect oil discovery during drilling. For the liquid additives with different oil products, the characterizations can be quantified and evaluated through a T2 cumulated spectrum, oil peak(T2g), and oil content of the drilling fluids. NMR can improve the application of florescent additives and help us to enhance oil exploration benefits and improve drilling operations and efficiency.展开更多
An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to eval...An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes.In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy.Micro particles are added to the cutting fluid circuit bya developed high-pressure mixing vessel.After the evaluation of suitable particle size,particle concentration and coolant pressure,a computational fluid dynamics(CFD)simulation is validated with the experimental results.The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57%between simulation and experiment.The simulation considers the kinematic viscosity of the fluid.The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between theguidechamfers.Theflow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication.With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved.Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process.展开更多
Objective: This study aimed to investigate effective components of dried ginger(DG) in warming lung to reduce watery phlegm and in vivo tissue distribution on the syndrome of cold fluid retained in lung of rats with c...Objective: This study aimed to investigate effective components of dried ginger(DG) in warming lung to reduce watery phlegm and in vivo tissue distribution on the syndrome of cold fluid retained in lung of rats with chronic obstructive pulmonary disease(COPD) by means of the "syndrome?efficacy?biological sample analysis" method and then to explore its meridian tropism. Methods: Wistar rats were given nasal drops of 200-μL lipopolysaccharide and smoke 30 min two times a day, then put the appropriate dose of ice water, and freeze for an hour to build model rats. On the 16 th day, the drug group was orally administered of DG(500 mg/mL) until the 30 th day. Blood samples and biological tissues were collected from the orbital venous plexus into heparinized hemostasis tubes at 5, 10, 15, 30, 45, 60, 90, 120, 180, 240, and 360 min after the last administration. Using ultraviolet-high-performance liquid chromatography(Waters, USA) method, the effective components were tested, and DAS 3.0 software(Mathematical Pharmacology Professional Committee of China, Shanghai, China) was used to analyze the results. Results: The compounds of DG entering into blood were 6-gingerol, 6-shogaol, and 8-gingerol. Tissue distribution analysis indicates that three active ingredients are widely present in the lung, spleen, kidney, liver, heart, large intestine, stomach, small intestine, and other organs of rats with COPD. Conclusions: 6?gingerol, 6?shogaol, and 8?gingerol belong to effective components of DG in curing the syndrome of cold fluid retained in lung of rats with COPD and mainly distributed in organs including the spleen, stomach, lung, kidney, liver, and heart.展开更多
Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control ...Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control requirements during their application.However,the damage-control mechanisms and degree of formation damage caused by fuzzy-ball fluids have not been investigated in lab-scale studies so far.In this study,the degree of fuzzy-ball-induced damage in single-and double-layer reservoirs was evaluated through core flooding experiments that were based on permeability and flow rate indexes.Additionally,its damage mechanisms were observed via scanning electron microscope and energy-dispersive spectroscopy tests.The results show that:(1)For single-layer reservoirs,the FBWF induced weak damage on coals and medium-to-weak damage on sandstones,and the difference of the damage in permeability or flow rate index on coals and sandstones is below 1%.Moreover,the minimum permeability recovery rate was above 66%.(2)For double-layer commingled reservoirs,the flow rate index revealed weak damage and the overall damage in double-layer was lower than the single-layer reservoirs.(3)There is no significant alteration in the microscopic structure of fuzzy-ball saturated cores with no evidence of fines migration.The dissolution of lead and sulfur occurred in coal samples,while tellurium in sandstone,aluminum,and magnesium in carbonate.However,the precipitation of aluminum,magnesium,and sodium occurred in sandstone but no precipitates found in coal and carbonate.The temporal plugging and dispersion characteristics of the FBWFs enable the generation of reservoir protection layers that will minimize formation damage due to solid and fluid invasion.展开更多
基金Supported by the Sinopec Major Science and Technology Project (JPE19007)。
文摘A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling parameters were discussed. The nitrogen chamber in the sampling cylinder functions as an energy storage air cushion, which can supplement the pressure loss caused by temperature change in the sampling process to some extent. The downhole pressurization is to press the sample into the sample chamber as soon as possible, and further increase the pressure of sample to make up for the pressure that the nitrogen chamber cannot provide. Through the analysis of working mode of the sampling fidelity cylinder, the non-ideal gas state equation was used to deduce and calculate the optimal values of fidelity parameters such as pre-charged nitrogen pressure, downhole pressurization amount and sampling volume according to whether the bubble point pressure of the sampling fluid was known and on-site emergency sampling situation. Besides, the influences of ground temperature on fidelity parameters were analyzed, and corresponding correction methods were put forward. The research shows that the fidelity sampling cylinder while drilling can effectively improve the fidelity of the sample. When the formation fluid sample reaches the surface, it can basically ensure that the sample does not change in physical phase state and keeps the same chemical components in the underground formation.
基金supported by the National Natural Science Foundation of China (No. 50674098)Major Project of Chinese Science and Technology (No. 2011ZX 05000-020-04)Major Project of SINOPEC Science and Technology (No. P13147)
文摘Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud invasion has just started, mudcake has not formed entirely and the formation pressure is not stable. Therefore, it is important to study the influence of the downhole dynamic environment on pressure testing and fluid sampling. This paper applies an oil-water two phase finite element model to study the influence of mudcake quality and mud filtrate invasion on supercharge pressure, pretest and sampling in the reservoirs of different permeability. However, the study is only for the cases with water based mud in the wellbore. The results illustrate that the mudcake quality has a significant influence on the supercharge pressure and fluid sampling, while the level of mud filtrate invasion has a strong impact on pressure testing and sampling. In addition, in-situ formation pressure testing is more difficult in low permeability reservoirs as the mud filtrate invasion is deeper and therefore degrades the quality of fluid sampling. Finally, a field example from an oil field on the Alaskan North Slope is presented to validate the numerical studies of the effects of downhole dynamic conditions on formation testing while drilling.
文摘Fluorescent additives can reduce drilling operation risks, especially during high angle deviated well drilling and when managing stuck pipe problems. However, they can affect oil discovery and there is a need to reduce the level of fluorescents or change the drilling fluids to prevent loss of drilling velocity and efficiency. In this paper, based on the analysis of drilling fluids by NMR with high sensitivity, solid and liquid additives have been analyzed under conditions with different fluorescent levels and temperatures. The results show that all of the solid additives have no NMR signal, and therefore cannot affect oil discovery during drilling. For the liquid additives with different oil products, the characterizations can be quantified and evaluated through a T2 cumulated spectrum, oil peak(T2g), and oil content of the drilling fluids. NMR can improve the application of florescent additives and help us to enhance oil exploration benefits and improve drilling operations and efficiency.
文摘An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole.Therefore,suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes.In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy.Micro particles are added to the cutting fluid circuit bya developed high-pressure mixing vessel.After the evaluation of suitable particle size,particle concentration and coolant pressure,a computational fluid dynamics(CFD)simulation is validated with the experimental results.The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57%between simulation and experiment.The simulation considers the kinematic viscosity of the fluid.The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between theguidechamfers.Theflow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication.With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved.Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process.
文摘Objective: This study aimed to investigate effective components of dried ginger(DG) in warming lung to reduce watery phlegm and in vivo tissue distribution on the syndrome of cold fluid retained in lung of rats with chronic obstructive pulmonary disease(COPD) by means of the "syndrome?efficacy?biological sample analysis" method and then to explore its meridian tropism. Methods: Wistar rats were given nasal drops of 200-μL lipopolysaccharide and smoke 30 min two times a day, then put the appropriate dose of ice water, and freeze for an hour to build model rats. On the 16 th day, the drug group was orally administered of DG(500 mg/mL) until the 30 th day. Blood samples and biological tissues were collected from the orbital venous plexus into heparinized hemostasis tubes at 5, 10, 15, 30, 45, 60, 90, 120, 180, 240, and 360 min after the last administration. Using ultraviolet-high-performance liquid chromatography(Waters, USA) method, the effective components were tested, and DAS 3.0 software(Mathematical Pharmacology Professional Committee of China, Shanghai, China) was used to analyze the results. Results: The compounds of DG entering into blood were 6-gingerol, 6-shogaol, and 8-gingerol. Tissue distribution analysis indicates that three active ingredients are widely present in the lung, spleen, kidney, liver, heart, large intestine, stomach, small intestine, and other organs of rats with COPD. Conclusions: 6?gingerol, 6?shogaol, and 8?gingerol belong to effective components of DG in curing the syndrome of cold fluid retained in lung of rats with COPD and mainly distributed in organs including the spleen, stomach, lung, kidney, liver, and heart.
基金The authors wish to thank the Ministry of Science and Technology of the People's Republic of China(2016ZX05066).
文摘Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control requirements during their application.However,the damage-control mechanisms and degree of formation damage caused by fuzzy-ball fluids have not been investigated in lab-scale studies so far.In this study,the degree of fuzzy-ball-induced damage in single-and double-layer reservoirs was evaluated through core flooding experiments that were based on permeability and flow rate indexes.Additionally,its damage mechanisms were observed via scanning electron microscope and energy-dispersive spectroscopy tests.The results show that:(1)For single-layer reservoirs,the FBWF induced weak damage on coals and medium-to-weak damage on sandstones,and the difference of the damage in permeability or flow rate index on coals and sandstones is below 1%.Moreover,the minimum permeability recovery rate was above 66%.(2)For double-layer commingled reservoirs,the flow rate index revealed weak damage and the overall damage in double-layer was lower than the single-layer reservoirs.(3)There is no significant alteration in the microscopic structure of fuzzy-ball saturated cores with no evidence of fines migration.The dissolution of lead and sulfur occurred in coal samples,while tellurium in sandstone,aluminum,and magnesium in carbonate.However,the precipitation of aluminum,magnesium,and sodium occurred in sandstone but no precipitates found in coal and carbonate.The temporal plugging and dispersion characteristics of the FBWFs enable the generation of reservoir protection layers that will minimize formation damage due to solid and fluid invasion.