The main objective of this study is to determine the rates of vertically and horizontally oriented drilling processes in marble quarries and to observe the factors affecting the drilling rates in terms of physical and...The main objective of this study is to determine the rates of vertically and horizontally oriented drilling processes in marble quarries and to observe the factors affecting the drilling rates in terms of physical and mechanical properties of the rocks. In situ drilling tests were performed in different marble quarries with different marble types and drilling times and penetration rates for a series of successive depthincrements were trying to be determined under vertically and horizontally oriented conditions. In order to understand the relation between the parameters that are investigated within the scope of this research, uniaxial compressive strength, Brazilian tensile strength, impact strength, Bohme abrasion strength, P-wave velocity, porosity, unit volume weight, Schmidt hardness index and brittleness index values were correlated with the drilling rates. It was noticed that the porosity and unit volume weight could be taken as the key parameters among them for obtaining meaningful correlation with drilling performance. It was also observed that the physical and mechanical rock properties are more relevant in vertical drilling than horizontal drilling.展开更多
Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pr...Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.展开更多
A multi-casing structure in drilling engineering can be considered as an inhomogeneous body consisting of many different materials. The mechanical behavior of the inhomogeneous body in an infinite domain is very com- ...A multi-casing structure in drilling engineering can be considered as an inhomogeneous body consisting of many different materials. The mechanical behavior of the inhomogeneous body in an infinite domain is very com- plicated. In this paper, a detailed expression about the fictitious stress method of the boundary element method (BEM) is demonstrated for the inhomogeneous body. Then the fictitious stress method is deployed to investigate the stresses for the multi-casing structure under non-uniform loading conditions and an irregular wellbore. Three examples of the multi-casing structure in the borehole imply the high effectiveness of BEM for complex geometries related to the borehole in an infinite formation. The effects of casing eccentricity and the interfacial gap on the stress field are discussed. The eccentric casing takes the potential yield when the eccentric orientation is along the direction of Sh. Under different eccentric orientations, the yon Mises stress in the casing increases with increasing degree of eccentricity. The radial stress in the multi-casing structure is always continuous along the radius, but the circumferential stress is discontinuous at the interface. The radial stress decreases and the circumferential stress increases with the increasing of the interfacial gap between the adjacent materials.展开更多
Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factor...Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.展开更多
A 2 m class robotic drill was sent to the Moon and successfully collected and returned regolith samples in late 2020 by China.It was a typical thick wall spiral drill(TWSD)with a hollow auger containing a complex cori...A 2 m class robotic drill was sent to the Moon and successfully collected and returned regolith samples in late 2020 by China.It was a typical thick wall spiral drill(TWSD)with a hollow auger containing a complex coring system to retain subsurface regolith samples.Before the robotic drill was launched,a series of laboratory tests were carried out to investigate and predict the possible drilling loads it may encounter in the lunar environment.This work presents how the sampling performance of the TWSD is affected by the regolith compressibility.Experiments and analysis during the drilling and sampling process in a simulated lunar regolith environment were conducted.The compressibility of a typical lunar regolith simulant(LRS)was measured through unidirectional compression tests to study the relationship between its inner regolith stress and bulk density.A theoretical model was established to elucidate the cutting discharge behavior by auger flights based on the aforementioned relationship.Experiments were conducted with the LRS,and the results show that the sampling performance is greatly affected by the flux of the drilled cuttings into the spiral flight channels.This work helped in scheduling reasonable drilling parameters to promote the sampling performance of the robotic drill in the Chinese Chang’E 5 mission.展开更多
Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several p...Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several prominent mechanical release methods for residual stress measurement and recent developments, focusing on the hole-drilling method combined with advanced optical sensing. Some promising trends for mechanical release methods are also analyzed.展开更多
文摘The main objective of this study is to determine the rates of vertically and horizontally oriented drilling processes in marble quarries and to observe the factors affecting the drilling rates in terms of physical and mechanical properties of the rocks. In situ drilling tests were performed in different marble quarries with different marble types and drilling times and penetration rates for a series of successive depthincrements were trying to be determined under vertically and horizontally oriented conditions. In order to understand the relation between the parameters that are investigated within the scope of this research, uniaxial compressive strength, Brazilian tensile strength, impact strength, Bohme abrasion strength, P-wave velocity, porosity, unit volume weight, Schmidt hardness index and brittleness index values were correlated with the drilling rates. It was noticed that the porosity and unit volume weight could be taken as the key parameters among them for obtaining meaningful correlation with drilling performance. It was also observed that the physical and mechanical rock properties are more relevant in vertical drilling than horizontal drilling.
基金supported by the Fundamental Research Funds for the Central University (Nos.CDJZR10248801,CDJZR122488 01)the National Natural Science Foundation of China (No.51104191)
文摘Based on the technologies of traditionally mechanical drilling and water jet,we propose a new method of abrasive water jet in combination with rock drilling,and establish a combined rock drilling system for the gas pre-drainage.This study chose the common sandstone and silicon limestone as the rock sample.A series of experiments were completed in the case of dry drilling,existing technology drilling,combined drilling with high pressure water jet and combined drilling with abrasive water jet,respectively.The drilling efficiency and performance were contrasted and analyzed in detail.The results indicate that it is better to choose the method of combined drilling with the high-pressure water jet for soft rocks.The method of combined drilling with abrasive water jet is feasible for the hard rock drilling and has higher drilling efficiency and performance.In this paper,compared with the existing technology,the drilling depth has increased by about 65%,the axial force and torque have reduced by about 14%and 17%,respectively,and the drill wear reduces obviously in the same conditions.
基金supported by the China National High Technology Research and Development Program 863 (Grant No. 2013AA064503)The China Scholarship Council
文摘A multi-casing structure in drilling engineering can be considered as an inhomogeneous body consisting of many different materials. The mechanical behavior of the inhomogeneous body in an infinite domain is very com- plicated. In this paper, a detailed expression about the fictitious stress method of the boundary element method (BEM) is demonstrated for the inhomogeneous body. Then the fictitious stress method is deployed to investigate the stresses for the multi-casing structure under non-uniform loading conditions and an irregular wellbore. Three examples of the multi-casing structure in the borehole imply the high effectiveness of BEM for complex geometries related to the borehole in an infinite formation. The effects of casing eccentricity and the interfacial gap on the stress field are discussed. The eccentric casing takes the potential yield when the eccentric orientation is along the direction of Sh. Under different eccentric orientations, the yon Mises stress in the casing increases with increasing degree of eccentricity. The radial stress in the multi-casing structure is always continuous along the radius, but the circumferential stress is discontinuous at the interface. The radial stress decreases and the circumferential stress increases with the increasing of the interfacial gap between the adjacent materials.
基金Supported by the National Science and Technology Major Project(2016ZX05060-014)PetroChina Major Science and Technology Project(ZD2019-183-005)。
文摘Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.
基金financially supported in-part by the Pre-research project on Civil Aerospace Technologies by CNSA(No.D020201)the National Natural Science Foundation of China(No.51905105,51775011,11932001,51635002,and U2013603)+2 种基金the Natural Science Foundation of Guangdong Province(No.2020A1515011262)the State Key Laboratory of Robotics and Systems(HIT)(No.SKLRS-2020-KF12)the Technology Innovation Strategic Special Funds of Guangdong Province(No.2019A050503011)。
文摘A 2 m class robotic drill was sent to the Moon and successfully collected and returned regolith samples in late 2020 by China.It was a typical thick wall spiral drill(TWSD)with a hollow auger containing a complex coring system to retain subsurface regolith samples.Before the robotic drill was launched,a series of laboratory tests were carried out to investigate and predict the possible drilling loads it may encounter in the lunar environment.This work presents how the sampling performance of the TWSD is affected by the regolith compressibility.Experiments and analysis during the drilling and sampling process in a simulated lunar regolith environment were conducted.The compressibility of a typical lunar regolith simulant(LRS)was measured through unidirectional compression tests to study the relationship between its inner regolith stress and bulk density.A theoretical model was established to elucidate the cutting discharge behavior by auger flights based on the aforementioned relationship.Experiments were conducted with the LRS,and the results show that the sampling performance is greatly affected by the flux of the drilled cuttings into the spiral flight channels.This work helped in scheduling reasonable drilling parameters to promote the sampling performance of the robotic drill in the Chinese Chang’E 5 mission.
基金the financial support from the National Basic Research Program of China(Project‘973’)(Nos.2010CB631005 and 2011CB606105)the National Natural Science Foundation of China(Nos.91216301,11172151,11232008,11072033 and 11372037)+1 种基金Tsinghua University Initiative Scientific Research Program,Program for New Century Excellent Talents in University(grant No.NCET-12-0036)Natural Science Foundation of Beijing,China(grant No.3122027)
文摘Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several prominent mechanical release methods for residual stress measurement and recent developments, focusing on the hole-drilling method combined with advanced optical sensing. Some promising trends for mechanical release methods are also analyzed.