Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a rev...Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a review of selected water contaminants and their impacts on human health.The World Health Organization(WHO)guidelines and regional standards for key contaminants were used to characterise water quality in the European Union and UK.The concept of safe drinking water was explained based on the non-observed adverse effect level,threshold concentrations for toxic chemicals,and their total daily intake.Various techniques for monitoring water contaminants and the drinking water standards from five different countries,including the UK,USA,Canada,Pakistan and India,were compared to WHO recommended guidelines.The literature on actual water quality in these regions and its potential health impacts was also discussed.Finally,the role of public water suppliers in identifying and monitoring drinking water contaminants in selected developed countries was presented as a potential guideline for developing countries.This review emphasised the need for a comprehensive understanding of water quality and its impacts on human health to ensure access to clean drinking water worldwide.展开更多
Located south of the West Bank, Wadi Al-Samen is considered one of the most important sources of groundwater recharge for the eastern aquifer in Hebron. It is polluted by sewage originating from domestic and industria...Located south of the West Bank, Wadi Al-Samen is considered one of the most important sources of groundwater recharge for the eastern aquifer in Hebron. It is polluted by sewage originating from domestic and industrial consumption in the Hebron area. Water quality assessment is an important criterion for achieving sustainable development. To evaluate water quality, twenty samples were collected from groundwater sources for two seasons and were analyzed for Physical properties (Total dissolved solids (TDS), Electrical conductivity (EC), potential hydrogen (pH), Temperature (T)), Four major cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>), and the Major anions (HCO<sup>-</sup>3</sub>, Cl<sup>-</sup>, and SO<sup>2-</sup>4</sub>);geochemical methods such as Piper scheme were used for the sample result analysis. To characterize wastewater components, six samples were collected from the Wadi discharge for two seasons and were analyzed (potential hydrogen (pH), Electrical Conductivity (EC), Total Dissolved Solid (TDS), Total Suspended Solids (TDS), Total Suspended Solids (TSS), Biological Oxygen Demand (BOD<sub>5</sub>), and Chemical Oxygen Demand (COD). The results of nitrate levels showed that 20% of the ground water samples exceeded the standard limit of the World Health Organization (WHO). The quality of drinking water was assessed using the Water Quality Index (WQI), which suggests that 10% of samples are classified from poor to very poor. The abundance of cations from highest to lowest was found to be: Ca;Mg;Na, and for the anions it is HCO<sub>3</sub>;Cl;SO<sub>4</sub>. The dominant hydrochemical facies of 35% of collected aquifer samples reveal that Ca-Mg-Na-Cl-HCO<sub>3</sub> are in the domain. Evaluation of irrigation suitability was performed using parameters of Sodium adsorption ratio (SAR), electric conductivity (EC), and Salinity. The results in both rounds for EC showed that all water sources are suitable for irrigation according to Todd’s classification. SAR was not suitable in three water resources samples. Wilcox analysis for the two seasons revealed that 85% of samples are not appropriate for irrigation uses.展开更多
Water quality is one of the main indicators of the quality of service provided to consumers. Quality has an impact on both the public health and aesthetic value of water as a consumable product. Kenya is classified as...Water quality is one of the main indicators of the quality of service provided to consumers. Quality has an impact on both the public health and aesthetic value of water as a consumable product. Kenya is classified as a water-scarce country with only 647 cubic meters of renewable freshwater per capita. Water distributed in Nairobi is faced with a myriad of challenges leading to a compromise to its quality. This study focused on evaluating quality of drinking water since human health depends on adequate, clean, reliable water. Analyses were carried out at National Environmental Management Authority (NEMA) accredited Jomo Kenyatta University of Agriculture and Technology (JKUAT) laboratories to determine the chemical, bacteriological and physical characteristics of consumed water in Umoja Innercore Estate in Nairobi. In the study area, 7 HH and 6 BH sites were randomly distributed. pH, turbidity and temperature measurements were analyzed in-situ while bacteria and chemicals were analyzed in laboratories. The study found that 100% of boreholes recorded unsatisfactory water with up to 1100 of Escherichia coli (E. coli) showing high contamination with faecal coliforms and 83% of boreholes recording pH of up to 9.53. Dissolved oxygen was 5.08 mg/L below recommended 12.0 mg/L, salinity of 0.47 mg/L and 0.03 mg/L for boreholes and households respectively. The study reveals the deprived quality of water available to the residents of Umoja Innercore, Nairobi. The study recommends the use of biosand filtration methods for septic tanks, digging of deeper boreholes and lining septic tanks with impermeable materials to prevent contamination of ground water with raw water from septic.展开更多
To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used....To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN.展开更多
Backgrounds: One of the fundamental needs of a community is to have an access to healthy and safe drinking water. The lack of a concentrated accessibility to health facilities and services is among the serious problem...Backgrounds: One of the fundamental needs of a community is to have an access to healthy and safe drinking water. The lack of a concentrated accessibility to health facilities and services is among the serious problems facing villagers in the rural areas. The aims of this research was to investigate the drinking water quality of the villages in Babol township suburbs in north of Iran. Materials and Methods: In this cross-sectional descriptive study, a total of 140 water samples were taken from the water distribution network in16 villages for the low and high-rain seasons in sterile glass bottle. The microbial quality of gathered samples were determined based on standard methods in laboratory. Statistical analysis of the results was performed using a SPSS16 statistical software. Findings: Based on obtained results 13.6% of the samples were contaminated to coliform and 20% to fecal coliform bacteria. The residual chlorine in 12.5% of the samples were between 0.2 to 0.8 mg·L-1 and the PH in total samples were between 6.8 to 7.8. There were no signs of any contamination for 32.86% of the analysed samples which water resources is located to a distance of more than 30 m to the contamination sources. In addition, 43.1% of the samples taken from the water resources with no plumbing system, have had a fecal contamination. Conclusions: Considering the results achieved, the microbial quality of the drinking water of the studied villages classified as “moderate” status. For more water supply there is not sufficient residual chlorine in most cases. Poor sanitation of water supply is most causes of water contamination. It is therefore strongly recommended that sanitation measures are made to protect water resources from the contamination.展开更多
Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Fi...Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Five-year Plan" period, the changing rules of the water quality were studied to provide scientific references for the improvement of drinking water safety of urban and rural residents and drinking water quality. The re- sults show that the water quality of centralized drinking water sources in Kaixian County improved year by year during the "Twelfth Five-year Plan" period, and most monitoring sites with water quality exceeding the standard are distributed in reservoirs. Total phosphorus, total nitrogen, chemical oxygen demand, and permanganate index exceeded the standard obviously. Main pollution sources are domestic pollution and non-point source pol- lution caused by excessive discharge of nitrogen, phosphorus and organic pollutants. To improve drinking water quality, it is suggested that some towns can get drinking water from other reservoirs, surface water or underground water with better quality instead of previous reservoirs with water quality exceeding the standard, and the control of non-point source pollution should be enhanced.展开更多
The World Bank estimates that 21% of all communicable diseases in India are related to unsafe water with diarrhoea alone causing more than 0.1 million deaths annually. The WHO drinking water surveillance parameters of...The World Bank estimates that 21% of all communicable diseases in India are related to unsafe water with diarrhoea alone causing more than 0.1 million deaths annually. The WHO drinking water surveillance parameters of quality, quantity, accessibility, affordability and continuity were assessed in one vulnerable ward of Ahmedabad—a fast growing city in Western India. Interviews with key informants of the ward office, health centre and water supply department, secondary analysis and mapping of field test reports and a questionnaire-based survey of different household types were conducted. We found that Ahmedabad Municipal Corporation (AMC) supplies water to the ward intermittently for two hours during the day. Housing society clusters supplement their AMC water supply with untested bore-well water. The water quality surveillance system is designed for a twenty-four-hour piped distribution of treated surface water. However, in order to maintain surveillance over an intermittent supply that includes ground water, the sampling process should include periodic surveys of water actually consumed by the citizens. The laboratory capacity of the Central Water Testing Laboratory should expand to include more refined tests for microbial and chemical contamination.展开更多
The United States Environmental Protection Agency (EPA) has the authority to regulate the public water systems. The EPA does not have the jurisdiction to regulate private drinking water wells. This leaves approximatel...The United States Environmental Protection Agency (EPA) has the authority to regulate the public water systems. The EPA does not have the jurisdiction to regulate private drinking water wells. This leaves approximately fifteen percent of the nation’s population without any regulation being held in place to protect their source of drinking water. With that fifteen percent of the US population having private wells for drinking water, it makes the number of people whose drinking water is unprotected by regulation at a little over 15 million US households. This concern is even more acute in areas with groundwater that is close to the surface. Delaware residents live in a region with low elevation which is very close to the coast with low elevation and the shallow groundwater makes us concern about contaminated well water even more intense. As one of the Water Resources Program partners, we have offered free Drinking Water Quality Clinics to local well owners over the past 4 years in Delaware State University. Since 2009, over 400 Delaware residents have benefited from these clinics. At each clinic, an information session was offered in the evening, with an opportunity to hear from and speak with a drinking water well expert. Participants were given sample bottles and water testing performed the following day included pH, nitrite, nitrate, sulfate, alkalinity, fluoride, hardness, iron, lead, cadmium, arsenic, Total Coliform, and E. coli. Over half of the samples returned out of range values for pH, while 72 returned results positive for Total Coliform and Escherichia coli bacterium. Data are examined for correlations, and improved understanding of local well owners. These tests shared with local well owners insights into what may be wrong with their water. In addition, any tests that came back outside of the normal range were reported to homeowners in writing. Mailed with the written reports were also information specific to what test results were outside of the limits, and actions to take to correct the exact problem the well owners encountered. The data reported here are examined to discuss the correlations of information, and ways that the Drinking Water Quality Clinics have improved our understanding of local wells and ownerships. In conclusion, regular testing on a yearly basis is the most effective way to ensure that public health is maintained.展开更多
Minerals and constitutes in drinking water are vital for the nutrition of human bodies. Certain limits of water quality parameters must be met to ensure the safety of bottled drinking water for the human consumption. ...Minerals and constitutes in drinking water are vital for the nutrition of human bodies. Certain limits of water quality parameters must be met to ensure the safety of bottled drinking water for the human consumption. Thirty two local and twelve imported brands of bottled water in Saudi Arabia have been collected to verify their compliance with international and local standards which are EPA (2016), WHO (2013) and SASO (2009). A proposed scoring system is used to evaluate the water quality. Fayha and Hilwa brands have been selected as the best local brands whereas Volvic brand as the optimal imported brand in the western region of Saudi Arabia. The local water brands are more reliable to the standards than the imported brands. Licensed water brands in Saudi Arabia are found to have a good water quality which satisfied the quality requirements.展开更多
River water is still a major source of drinking water for major part of population. Sangamner city is using the River water for drinking, domestic and industrial purpose. At the same time the waste generated is discha...River water is still a major source of drinking water for major part of population. Sangamner city is using the River water for drinking, domestic and industrial purpose. At the same time the waste generated is discharged into the River without or with partial treatment. So in present investigation the River water quality was analyzed for the parameters like pH, Electrical Conductivity, Total Dissolved Solids, Total Hardness, Calcium, Magnesium, Alkalinity, Chloride, Dissolved Oxygen, Chemical Oxygen Demand, Biological Oxygen Demand. Sodium, Potassium, Sulphate, Phosphate and Nitrate. The water quality index for drinking purpose was calculated using same data. The grading system was used to assess the water quality index. The result indicates that the poor water quality at four sites ranging from 250 to 745. Only site 1 shows good water quality which is 36.08 which lies in grade B.展开更多
With a grant from the Italian Ministry of the Environment, the National Institute of Health (Istituto Superiore di Sanita) promoted and coordinated some activities aimed at determining the extent and the intensity of ...With a grant from the Italian Ministry of the Environment, the National Institute of Health (Istituto Superiore di Sanita) promoted and coordinated some activities aimed at determining the extent and the intensity of contamination of waters used for human consumption by some chemical agents, and describing causes and modalities of contamination and human health implications. The chemical agents examined were herbicides, nitrates, trihalomethanes, asbestos, manganese and fluoride. In this paper a first nationwide picture of these problems is reported.展开更多
Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive...Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.展开更多
The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration ...The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.展开更多
The present study focused on the hydrochemistry of groundwater in parts of Chandauli-Varanasi region to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Urbaniz...The present study focused on the hydrochemistry of groundwater in parts of Chandauli-Varanasi region to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Urbanization and agriculture activities have a lot of impacts on the groundwater quality of the study area. A total of 70 ground water samples were collected randomly from different sources viz. hand pump, dug wells and bore wells, and analyzed for major cations and anions. The domination of cations and anions was in the order of Na > Ca > Mg > K and HCO3 > Cl > SO4 > NO3 > F. The Piper classification for hydrogeochemical facies indicates that alkaline earth exceeds alkalis and weak acids exceed strong acid. Water quality index rating was calculated to quantify overall water quality for human consumption. Out of 70 groundwater samples, 7% and 10% samples exhibit water unsuitable for drinking purposes in pre- and post-monsoon, respectively, due to effective leaching of ions, direct discharge of domestic effluents and agricultural activities. Residual sodium carbonate values revealed that 6% sample is not suitable for irrigation purposes in both the seasons due to low permeability of the soil. The calculated values of PI indicate that the water for irrigation uses is excellent to good quality in both seasons. As per Wilcox’s diagram and US salinity laboratory classification, most of the groundwater samples are suitable for irrigation except one sample which is unsuitable for irrigation purposes. The overall quality of groundwater in post-monsoon season in all chemical constituents is on the higher side due to dissolution of surface pollutants during the infiltration and percolation of rainwater at few places due to agricultural and domestic activities.展开更多
To study arsenic (As) content and distribution patterns as well as the genesis of different kinds of water,especially the different sources of drinking water in Guanzhong Basin,Shaanxi province,China,139 water sampl...To study arsenic (As) content and distribution patterns as well as the genesis of different kinds of water,especially the different sources of drinking water in Guanzhong Basin,Shaanxi province,China,139 water samples were collected at 62 sampling points from wells of different depths,from hot springs,and rivers.The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method (HG-AFS).The As concentrations in the drinking water in Guanzhong Basin vary greatly (0.00-68.08 tg/L),and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin.Even within the same location in southern Guanzhong Basin,the As concentrations at different depths vary greatly.As concentration of groundwater from the shallow wells (〈50 m deep,0.56-3.87 μg/L) is much lower than from deep wells (110-360 m deep,19.34-62.91 μg/L),whereas As concentration in water of any depth in northern Guanzhong Basin is 〈10 μg/L.Southern Guanzhong Basin is a newly discovered high-As groundwater area in China.The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers,which store water in the Lishi and Wucheng Loess (Lower and Middle Pleistocene) in the southern Guanzhong Basin.As concentration of hot spring water is 6.47-11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68-68.08 μg/L.The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine (F) value,which is generally 〈0.10 mg/L.Otherwise,the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values (8.07-14.96 mg/L).The results indicate that high As groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area.As concentration of all reservoirs and rivers (both contaminated and uncontaminated) in the Guanzhong Basin is 〈10 μg/L.This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin.The partition boundaries of the high-and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin.This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework.In southern Guanzhong Basin,the main sources of drinking water for villages and small towns today are wells between 110-360 m deep.All of their As contents exceed the limit of the Chinese National Standard and the International Standard (〉10 μg/L) and so local residents should use other sources of clean water that are 〈50 m deep,instead of deep groundwater (110 to 360 m) for their drinking water supply.展开更多
According to characteristic index of spatial-temporal variability of rural drinking water safety in Ya’an City of Sichuan, China, such as water quantity, water quality, convenience degree and guaranteed rate, etc., t...According to characteristic index of spatial-temporal variability of rural drinking water safety in Ya’an City of Sichuan, China, such as water quantity, water quality, convenience degree and guaranteed rate, etc., this study elaborated the basic framework, model’s methodology structure in early warning system of rural drinking water safety on the basis of ComGIS and initially designed information collection, search and re-trieval, evaluation and analysis of factors, dynamic prediction and dynamic early-warning and functions of guidance and management in this system. The design of this system provided scientific basis to grasp the state of rural drinking water safety timely, release early warning information and properly take necessary control measures, etc. The evaluation results showed that the overall trend was getting better. It proved that the rising pressure value and response value were main reasons which caused the rising evaluation value of rural drinking water safety.展开更多
Environmental degradation and unethical human intervention in the natural system has increased the concern for the betterment of healthy living. The deterioration of aquatic system is commonplace in the developing wor...Environmental degradation and unethical human intervention in the natural system has increased the concern for the betterment of healthy living. The deterioration of aquatic system is commonplace in the developing world. The present paper shows the trace elements (Ni, Zn, Fe, Pb, Cd, Co, Cu and Mn) concentrations in the drinking water of Aligarh city and their possible effect on the health of the inhabitants. The higher concen- tration of some elements in the drinking water and the poor health of inhabitants are found correlated. The statistical analysis of the data shows positive correlation between some elements. The principal component analysis of the data gives four factors with significance level of 42%, 29%, 15% and 12% respectively.展开更多
Water samples from streams, hand-dug wells and boreholes in high background radiation areas in Abeokuta, Nigeria have been collected in order to determine the activity concentrations of 40K, 226Ra and 232Th in the sam...Water samples from streams, hand-dug wells and boreholes in high background radiation areas in Abeokuta, Nigeria have been collected in order to determine the activity concentrations of 40K, 226Ra and 232Th in the samples as well as their physicochemical characteristics. These parameters were evaluated in order to deter-mine the quality of these water sources to the local population, who use these water resources for drinking and domestic activities. Measurements of radioactivity in the water samples were carried out using γ-ray spectroscopy, while standard chemistry methods were used for the physicochemical determinations of these quality parameters. A total of fourteen representative water samples from streams (7), boreholes (4), and hand dug wells (3) were collected for study. The determined activity concentrations of the radionuclides in these samples were used to calculate the effective dose to the population from due to ingestion of and drink-ing the locally available water. The total annual ingestion effective doses were found to vary between 115.00 ±1.15μSv and 1362.30 ±438.02 μSv. The physicochemical parameters where found to be lower than the prescribed standard safe limits in the water sources except for the nitrate and phosphate levels which were particularly high in the water samples from boreholes and hand-dug wells. The radiation effective ingestion dose due to ingestion of water from dug wells and streams was found to be higher than the dose due to inges-tion of water from borehole sources in the studied areas. The results obtained in this study, have been taken as a baselines for physicochemical parameters and activity concentrations of natural radionuclides in water samples within Odeda and Obafemi-owode parts of Abeokuta, Nigeria.展开更多
Secondary water supply systems(SWSSs)are important components of the water supply infrastructure that ensure residents’drinking water safety.SWSSs are characterized by long detention time,warm temperature,and unreaso...Secondary water supply systems(SWSSs)are important components of the water supply infrastructure that ensure residents’drinking water safety.SWSSs are characterized by long detention time,warm temperature,and unreasonable management,which may trigger the deterioration of water quality and increase risks.In this study,drinking water quality index(DWQI)and health risk assessment(HRA)were selected and modified to quantitatively assess the water quality and health risks of SWSSs in residential neighborhoods.In total,121 seasonal water samples were selected.It was observed that the water quality was excellent with the DWQI of 0.14±0.04,excluding one sample,which was extremely poor owing to its excessive total bacterial count.The HRA results revealed that the health risks were low:negligible non-carcinogenic risk for any population;negligible and acceptable carcinogenic risk for children aged 6–17 and adults.However,samples revealed higher carcinogenic risk(7.63×10−5±3.29×10−6)for children aged 0–5,and arsenic was the major substance.Summer samples had poor water quality and higher health risks,which called for attention.To further investigate the water quality and health risks of SWSSs,monthly sampling was conducted during summer.All 24 water samples were qualified in Chinese standard(GB 5749-2022)and characterized as excellent quality.Their HRA results were consistent with the seasonal samples’and the health risks were mainly concentrated in May.Overall,our study provides a suitable framework for water quality security,advice for managers,and references for administrators in other cities.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
文摘Clean drinking water is one of the United Nations Sustainable Development Goals.Despite significant progress in the water purification technology,many regions still lack access to clean water.This paper provides a review of selected water contaminants and their impacts on human health.The World Health Organization(WHO)guidelines and regional standards for key contaminants were used to characterise water quality in the European Union and UK.The concept of safe drinking water was explained based on the non-observed adverse effect level,threshold concentrations for toxic chemicals,and their total daily intake.Various techniques for monitoring water contaminants and the drinking water standards from five different countries,including the UK,USA,Canada,Pakistan and India,were compared to WHO recommended guidelines.The literature on actual water quality in these regions and its potential health impacts was also discussed.Finally,the role of public water suppliers in identifying and monitoring drinking water contaminants in selected developed countries was presented as a potential guideline for developing countries.This review emphasised the need for a comprehensive understanding of water quality and its impacts on human health to ensure access to clean drinking water worldwide.
文摘Located south of the West Bank, Wadi Al-Samen is considered one of the most important sources of groundwater recharge for the eastern aquifer in Hebron. It is polluted by sewage originating from domestic and industrial consumption in the Hebron area. Water quality assessment is an important criterion for achieving sustainable development. To evaluate water quality, twenty samples were collected from groundwater sources for two seasons and were analyzed for Physical properties (Total dissolved solids (TDS), Electrical conductivity (EC), potential hydrogen (pH), Temperature (T)), Four major cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>), and the Major anions (HCO<sup>-</sup>3</sub>, Cl<sup>-</sup>, and SO<sup>2-</sup>4</sub>);geochemical methods such as Piper scheme were used for the sample result analysis. To characterize wastewater components, six samples were collected from the Wadi discharge for two seasons and were analyzed (potential hydrogen (pH), Electrical Conductivity (EC), Total Dissolved Solid (TDS), Total Suspended Solids (TDS), Total Suspended Solids (TSS), Biological Oxygen Demand (BOD<sub>5</sub>), and Chemical Oxygen Demand (COD). The results of nitrate levels showed that 20% of the ground water samples exceeded the standard limit of the World Health Organization (WHO). The quality of drinking water was assessed using the Water Quality Index (WQI), which suggests that 10% of samples are classified from poor to very poor. The abundance of cations from highest to lowest was found to be: Ca;Mg;Na, and for the anions it is HCO<sub>3</sub>;Cl;SO<sub>4</sub>. The dominant hydrochemical facies of 35% of collected aquifer samples reveal that Ca-Mg-Na-Cl-HCO<sub>3</sub> are in the domain. Evaluation of irrigation suitability was performed using parameters of Sodium adsorption ratio (SAR), electric conductivity (EC), and Salinity. The results in both rounds for EC showed that all water sources are suitable for irrigation according to Todd’s classification. SAR was not suitable in three water resources samples. Wilcox analysis for the two seasons revealed that 85% of samples are not appropriate for irrigation uses.
文摘Water quality is one of the main indicators of the quality of service provided to consumers. Quality has an impact on both the public health and aesthetic value of water as a consumable product. Kenya is classified as a water-scarce country with only 647 cubic meters of renewable freshwater per capita. Water distributed in Nairobi is faced with a myriad of challenges leading to a compromise to its quality. This study focused on evaluating quality of drinking water since human health depends on adequate, clean, reliable water. Analyses were carried out at National Environmental Management Authority (NEMA) accredited Jomo Kenyatta University of Agriculture and Technology (JKUAT) laboratories to determine the chemical, bacteriological and physical characteristics of consumed water in Umoja Innercore Estate in Nairobi. In the study area, 7 HH and 6 BH sites were randomly distributed. pH, turbidity and temperature measurements were analyzed in-situ while bacteria and chemicals were analyzed in laboratories. The study found that 100% of boreholes recorded unsatisfactory water with up to 1100 of Escherichia coli (E. coli) showing high contamination with faecal coliforms and 83% of boreholes recording pH of up to 9.53. Dissolved oxygen was 5.08 mg/L below recommended 12.0 mg/L, salinity of 0.47 mg/L and 0.03 mg/L for boreholes and households respectively. The study reveals the deprived quality of water available to the residents of Umoja Innercore, Nairobi. The study recommends the use of biosand filtration methods for septic tanks, digging of deeper boreholes and lining septic tanks with impermeable materials to prevent contamination of ground water with raw water from septic.
基金Projects(41161020,41261026) supported by the National Natural Science Foundation of ChinaProject(BQD2012013) supported by the Research starting Funds for Imported Talents,Ningxia University,China+1 种基金Project(ZR1209) supported by the Natural Science Funds,Ningxia University,ChinaProject(NGY2013005) supported by the Key Science Project of Colleges and Universities in Ningxia,China
文摘To develop a better approach for spatial evaluation of drinking water quality, an intelligent evaluation method integrating a geographical information system(GIS) and an ant colony clustering algorithm(ACCA) was used. Drinking water samples from 29 wells in Zhenping County, China, were collected and analyzed. 35 parameters on water quality were selected, such as chloride concentration, sulphate concentration, total hardness, nitrate concentration, fluoride concentration, turbidity, pH, chromium concentration, COD, bacterium amount, total coliforms and color. The best spatial interpolation methods for the 35 parameters were found and selected from all types of interpolation methods in GIS environment according to the minimum cross-validation errors. The ACCA was improved through three strategies, namely mixed distance function, average similitude degree and probability conversion functions. Then, the ACCA was carried out to obtain different water quality grades in the GIS environment. In the end, the result from the ACCA was compared with those from the competitive Hopfield neural network(CHNN) to validate the feasibility and effectiveness of the ACCA according to three evaluation indexes, which are stochastic sampling method, pixel amount and convergence speed. It is shown that the spatial water quality grades obtained from the ACCA were more effective, accurate and intelligent than those obtained from the CHNN.
文摘Backgrounds: One of the fundamental needs of a community is to have an access to healthy and safe drinking water. The lack of a concentrated accessibility to health facilities and services is among the serious problems facing villagers in the rural areas. The aims of this research was to investigate the drinking water quality of the villages in Babol township suburbs in north of Iran. Materials and Methods: In this cross-sectional descriptive study, a total of 140 water samples were taken from the water distribution network in16 villages for the low and high-rain seasons in sterile glass bottle. The microbial quality of gathered samples were determined based on standard methods in laboratory. Statistical analysis of the results was performed using a SPSS16 statistical software. Findings: Based on obtained results 13.6% of the samples were contaminated to coliform and 20% to fecal coliform bacteria. The residual chlorine in 12.5% of the samples were between 0.2 to 0.8 mg·L-1 and the PH in total samples were between 6.8 to 7.8. There were no signs of any contamination for 32.86% of the analysed samples which water resources is located to a distance of more than 30 m to the contamination sources. In addition, 43.1% of the samples taken from the water resources with no plumbing system, have had a fecal contamination. Conclusions: Considering the results achieved, the microbial quality of the drinking water of the studied villages classified as “moderate” status. For more water supply there is not sufficient residual chlorine in most cases. Poor sanitation of water supply is most causes of water contamination. It is therefore strongly recommended that sanitation measures are made to protect water resources from the contamination.
文摘Based on the monitoring data of water quality of more than 40 centralized drinking water sources in 40 towns (townships or streets) of Kaixian County in the first and second half of each year during the "Twelfth Five-year Plan" period, the changing rules of the water quality were studied to provide scientific references for the improvement of drinking water safety of urban and rural residents and drinking water quality. The re- sults show that the water quality of centralized drinking water sources in Kaixian County improved year by year during the "Twelfth Five-year Plan" period, and most monitoring sites with water quality exceeding the standard are distributed in reservoirs. Total phosphorus, total nitrogen, chemical oxygen demand, and permanganate index exceeded the standard obviously. Main pollution sources are domestic pollution and non-point source pol- lution caused by excessive discharge of nitrogen, phosphorus and organic pollutants. To improve drinking water quality, it is suggested that some towns can get drinking water from other reservoirs, surface water or underground water with better quality instead of previous reservoirs with water quality exceeding the standard, and the control of non-point source pollution should be enhanced.
文摘The World Bank estimates that 21% of all communicable diseases in India are related to unsafe water with diarrhoea alone causing more than 0.1 million deaths annually. The WHO drinking water surveillance parameters of quality, quantity, accessibility, affordability and continuity were assessed in one vulnerable ward of Ahmedabad—a fast growing city in Western India. Interviews with key informants of the ward office, health centre and water supply department, secondary analysis and mapping of field test reports and a questionnaire-based survey of different household types were conducted. We found that Ahmedabad Municipal Corporation (AMC) supplies water to the ward intermittently for two hours during the day. Housing society clusters supplement their AMC water supply with untested bore-well water. The water quality surveillance system is designed for a twenty-four-hour piped distribution of treated surface water. However, in order to maintain surveillance over an intermittent supply that includes ground water, the sampling process should include periodic surveys of water actually consumed by the citizens. The laboratory capacity of the Central Water Testing Laboratory should expand to include more refined tests for microbial and chemical contamination.
文摘The United States Environmental Protection Agency (EPA) has the authority to regulate the public water systems. The EPA does not have the jurisdiction to regulate private drinking water wells. This leaves approximately fifteen percent of the nation’s population without any regulation being held in place to protect their source of drinking water. With that fifteen percent of the US population having private wells for drinking water, it makes the number of people whose drinking water is unprotected by regulation at a little over 15 million US households. This concern is even more acute in areas with groundwater that is close to the surface. Delaware residents live in a region with low elevation which is very close to the coast with low elevation and the shallow groundwater makes us concern about contaminated well water even more intense. As one of the Water Resources Program partners, we have offered free Drinking Water Quality Clinics to local well owners over the past 4 years in Delaware State University. Since 2009, over 400 Delaware residents have benefited from these clinics. At each clinic, an information session was offered in the evening, with an opportunity to hear from and speak with a drinking water well expert. Participants were given sample bottles and water testing performed the following day included pH, nitrite, nitrate, sulfate, alkalinity, fluoride, hardness, iron, lead, cadmium, arsenic, Total Coliform, and E. coli. Over half of the samples returned out of range values for pH, while 72 returned results positive for Total Coliform and Escherichia coli bacterium. Data are examined for correlations, and improved understanding of local well owners. These tests shared with local well owners insights into what may be wrong with their water. In addition, any tests that came back outside of the normal range were reported to homeowners in writing. Mailed with the written reports were also information specific to what test results were outside of the limits, and actions to take to correct the exact problem the well owners encountered. The data reported here are examined to discuss the correlations of information, and ways that the Drinking Water Quality Clinics have improved our understanding of local wells and ownerships. In conclusion, regular testing on a yearly basis is the most effective way to ensure that public health is maintained.
文摘Minerals and constitutes in drinking water are vital for the nutrition of human bodies. Certain limits of water quality parameters must be met to ensure the safety of bottled drinking water for the human consumption. Thirty two local and twelve imported brands of bottled water in Saudi Arabia have been collected to verify their compliance with international and local standards which are EPA (2016), WHO (2013) and SASO (2009). A proposed scoring system is used to evaluate the water quality. Fayha and Hilwa brands have been selected as the best local brands whereas Volvic brand as the optimal imported brand in the western region of Saudi Arabia. The local water brands are more reliable to the standards than the imported brands. Licensed water brands in Saudi Arabia are found to have a good water quality which satisfied the quality requirements.
文摘River water is still a major source of drinking water for major part of population. Sangamner city is using the River water for drinking, domestic and industrial purpose. At the same time the waste generated is discharged into the River without or with partial treatment. So in present investigation the River water quality was analyzed for the parameters like pH, Electrical Conductivity, Total Dissolved Solids, Total Hardness, Calcium, Magnesium, Alkalinity, Chloride, Dissolved Oxygen, Chemical Oxygen Demand, Biological Oxygen Demand. Sodium, Potassium, Sulphate, Phosphate and Nitrate. The water quality index for drinking purpose was calculated using same data. The grading system was used to assess the water quality index. The result indicates that the poor water quality at four sites ranging from 250 to 745. Only site 1 shows good water quality which is 36.08 which lies in grade B.
文摘With a grant from the Italian Ministry of the Environment, the National Institute of Health (Istituto Superiore di Sanita) promoted and coordinated some activities aimed at determining the extent and the intensity of contamination of waters used for human consumption by some chemical agents, and describing causes and modalities of contamination and human health implications. The chemical agents examined were herbicides, nitrates, trihalomethanes, asbestos, manganese and fluoride. In this paper a first nationwide picture of these problems is reported.
基金the Shenzhen Science and Technology Projects of China (JCYJ20140417144423187 and JCYJ20130331145022339)Shenzhen Engineering Laboratory for Water Desalinization with Renewable Energy, China
文摘Water quality in China is becoming a severe challenge for agriculture and food safety, and it might also impact health of population via agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water pollution in China and its effects on food safety were analyzed. The 2nd National Water Resource Survey in China show that the surface water all over the country was under slight pollution and about 60% of groundwater is polluted. Drinking water quality is basically guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application still show increasing trends. Fertilizers and pesticides are the most important sources of pollution, which affect human health as persistent organic pollutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate pollution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a pollution source to China's water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water pollution is still a major challenge for China.
基金Jiangsu Suxie Academy of Environmental Technology for its support for the program"Study on the linkage system for emergency monitoring of water sources of the Yangtze River"(No.1203)~~
文摘The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.
文摘The present study focused on the hydrochemistry of groundwater in parts of Chandauli-Varanasi region to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Urbanization and agriculture activities have a lot of impacts on the groundwater quality of the study area. A total of 70 ground water samples were collected randomly from different sources viz. hand pump, dug wells and bore wells, and analyzed for major cations and anions. The domination of cations and anions was in the order of Na > Ca > Mg > K and HCO3 > Cl > SO4 > NO3 > F. The Piper classification for hydrogeochemical facies indicates that alkaline earth exceeds alkalis and weak acids exceed strong acid. Water quality index rating was calculated to quantify overall water quality for human consumption. Out of 70 groundwater samples, 7% and 10% samples exhibit water unsuitable for drinking purposes in pre- and post-monsoon, respectively, due to effective leaching of ions, direct discharge of domestic effluents and agricultural activities. Residual sodium carbonate values revealed that 6% sample is not suitable for irrigation purposes in both the seasons due to low permeability of the soil. The calculated values of PI indicate that the water for irrigation uses is excellent to good quality in both seasons. As per Wilcox’s diagram and US salinity laboratory classification, most of the groundwater samples are suitable for irrigation except one sample which is unsuitable for irrigation purposes. The overall quality of groundwater in post-monsoon season in all chemical constituents is on the higher side due to dissolution of surface pollutants during the infiltration and percolation of rainwater at few places due to agricultural and domestic activities.
基金supported financially by the Chinese National Science Foundation Project (41172310, 40171006)the Major State Basic Research Development Program (973) (2014CB238906)the National High Technology Research and Development Program (863) ofChina (2004AA601080, 2006AA06Z380)
文摘To study arsenic (As) content and distribution patterns as well as the genesis of different kinds of water,especially the different sources of drinking water in Guanzhong Basin,Shaanxi province,China,139 water samples were collected at 62 sampling points from wells of different depths,from hot springs,and rivers.The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method (HG-AFS).The As concentrations in the drinking water in Guanzhong Basin vary greatly (0.00-68.08 tg/L),and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin.Even within the same location in southern Guanzhong Basin,the As concentrations at different depths vary greatly.As concentration of groundwater from the shallow wells (〈50 m deep,0.56-3.87 μg/L) is much lower than from deep wells (110-360 m deep,19.34-62.91 μg/L),whereas As concentration in water of any depth in northern Guanzhong Basin is 〈10 μg/L.Southern Guanzhong Basin is a newly discovered high-As groundwater area in China.The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers,which store water in the Lishi and Wucheng Loess (Lower and Middle Pleistocene) in the southern Guanzhong Basin.As concentration of hot spring water is 6.47-11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68-68.08 μg/L.The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine (F) value,which is generally 〈0.10 mg/L.Otherwise,the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values (8.07-14.96 mg/L).The results indicate that high As groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area.As concentration of all reservoirs and rivers (both contaminated and uncontaminated) in the Guanzhong Basin is 〈10 μg/L.This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin.The partition boundaries of the high-and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin.This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework.In southern Guanzhong Basin,the main sources of drinking water for villages and small towns today are wells between 110-360 m deep.All of their As contents exceed the limit of the Chinese National Standard and the International Standard (〉10 μg/L) and so local residents should use other sources of clean water that are 〈50 m deep,instead of deep groundwater (110 to 360 m) for their drinking water supply.
文摘According to characteristic index of spatial-temporal variability of rural drinking water safety in Ya’an City of Sichuan, China, such as water quantity, water quality, convenience degree and guaranteed rate, etc., this study elaborated the basic framework, model’s methodology structure in early warning system of rural drinking water safety on the basis of ComGIS and initially designed information collection, search and re-trieval, evaluation and analysis of factors, dynamic prediction and dynamic early-warning and functions of guidance and management in this system. The design of this system provided scientific basis to grasp the state of rural drinking water safety timely, release early warning information and properly take necessary control measures, etc. The evaluation results showed that the overall trend was getting better. It proved that the rising pressure value and response value were main reasons which caused the rising evaluation value of rural drinking water safety.
文摘Environmental degradation and unethical human intervention in the natural system has increased the concern for the betterment of healthy living. The deterioration of aquatic system is commonplace in the developing world. The present paper shows the trace elements (Ni, Zn, Fe, Pb, Cd, Co, Cu and Mn) concentrations in the drinking water of Aligarh city and their possible effect on the health of the inhabitants. The higher concen- tration of some elements in the drinking water and the poor health of inhabitants are found correlated. The statistical analysis of the data shows positive correlation between some elements. The principal component analysis of the data gives four factors with significance level of 42%, 29%, 15% and 12% respectively.
文摘Water samples from streams, hand-dug wells and boreholes in high background radiation areas in Abeokuta, Nigeria have been collected in order to determine the activity concentrations of 40K, 226Ra and 232Th in the samples as well as their physicochemical characteristics. These parameters were evaluated in order to deter-mine the quality of these water sources to the local population, who use these water resources for drinking and domestic activities. Measurements of radioactivity in the water samples were carried out using γ-ray spectroscopy, while standard chemistry methods were used for the physicochemical determinations of these quality parameters. A total of fourteen representative water samples from streams (7), boreholes (4), and hand dug wells (3) were collected for study. The determined activity concentrations of the radionuclides in these samples were used to calculate the effective dose to the population from due to ingestion of and drink-ing the locally available water. The total annual ingestion effective doses were found to vary between 115.00 ±1.15μSv and 1362.30 ±438.02 μSv. The physicochemical parameters where found to be lower than the prescribed standard safe limits in the water sources except for the nitrate and phosphate levels which were particularly high in the water samples from boreholes and hand-dug wells. The radiation effective ingestion dose due to ingestion of water from dug wells and streams was found to be higher than the dose due to inges-tion of water from borehole sources in the studied areas. The results obtained in this study, have been taken as a baselines for physicochemical parameters and activity concentrations of natural radionuclides in water samples within Odeda and Obafemi-owode parts of Abeokuta, Nigeria.
基金supported by the National Natural Science Foundation of China(No.U2005206)the Xiamen Municipal Bureau of Science and Technology(China)(No.YDZX20203502000003).
文摘Secondary water supply systems(SWSSs)are important components of the water supply infrastructure that ensure residents’drinking water safety.SWSSs are characterized by long detention time,warm temperature,and unreasonable management,which may trigger the deterioration of water quality and increase risks.In this study,drinking water quality index(DWQI)and health risk assessment(HRA)were selected and modified to quantitatively assess the water quality and health risks of SWSSs in residential neighborhoods.In total,121 seasonal water samples were selected.It was observed that the water quality was excellent with the DWQI of 0.14±0.04,excluding one sample,which was extremely poor owing to its excessive total bacterial count.The HRA results revealed that the health risks were low:negligible non-carcinogenic risk for any population;negligible and acceptable carcinogenic risk for children aged 6–17 and adults.However,samples revealed higher carcinogenic risk(7.63×10−5±3.29×10−6)for children aged 0–5,and arsenic was the major substance.Summer samples had poor water quality and higher health risks,which called for attention.To further investigate the water quality and health risks of SWSSs,monthly sampling was conducted during summer.All 24 water samples were qualified in Chinese standard(GB 5749-2022)and characterized as excellent quality.Their HRA results were consistent with the seasonal samples’and the health risks were mainly concentrated in May.Overall,our study provides a suitable framework for water quality security,advice for managers,and references for administrators in other cities.