期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Probabilistic Architecture of Long-Term Vehicle Trajectory Prediction for Autonomous Driving 被引量:4
1
作者 Jinxin Liu Yugong Luo +3 位作者 Zhihua Zhong Keqiang Li Heye Huang Hui Xiong 《Engineering》 SCIE EI CAS 2022年第12期228-239,共12页
In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisio... In mixed and dynamic traffic environments,accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles to accomplish reasonable behavioral decisions and guarantee driving safety.In this paper,we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction,which consists of a driving inference model(DIM)and a trajectory prediction model(TPM).The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network.The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information.To further improve the prediction accuracy and realize uncertainty estimation,we develop a Gaussian process-based TPM,considering both the short-term prediction results of the vehicle model and the driving motion characteristics.Afterward,the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios.The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods. 展开更多
关键词 Autonomous driving Dynamic Bayesian network driving intention recognition Gaussian process Vehicle trajectory prediction
下载PDF
Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model 被引量:15
2
作者 Lei HE Chang-fu ZONG Chang WANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第3期208-217,共10页
We propose a model structure with a double-layer hidden Markov model (HMM) to recognise driving intention and predict driving behaviour. The upper-layer multi-dimensional discrete HMM (MDHMM) in the double-layer HMM r... We propose a model structure with a double-layer hidden Markov model (HMM) to recognise driving intention and predict driving behaviour. The upper-layer multi-dimensional discrete HMM (MDHMM) in the double-layer HMM represents driving intention in a combined working case, constructed according to the driving behaviours in certain single working cases in the lower-layer multi-dimensional Gaussian HMM (MGHMM). The driving behaviours are recognised by manoeuvring the signals of the driver and vehicle state information, and the recognised results are sent to the upper-layer HMM to recognise driving intentions. Also, driving behaviours in the near future are predicted using the likelihood-maximum method. A real-time driving simulator test on the combined working cases showed that the double-layer HMM can recognise driving intention and predict driving behaviour accurately and efficiently. As a result, the model provides the basis for pre-warning and intervention of danger and improving comfort performance. 展开更多
关键词 Vehicle engineering driving intention recognition driving behaviour prediction Driver model Double-layer hidden Markov model (HMM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部